分析 由題意,sin($α+\frac{π}{3}$)=-$\frac{4}{5}$,cos($α+\frac{π}{3}$)=-$\frac{3}{5}$,利用sinα=sin($α+\frac{π}{3}$-$\frac{π}{3}$)=sin($α+\frac{π}{3}$)cos$\frac{π}{3}$-cos($α+\frac{π}{3}$)sin$\frac{π}{3}$,可得結(jié)論.
解答 解:由題意,sin($α+\frac{π}{3}$)=-$\frac{4}{5}$,cos($α+\frac{π}{3}$)=-$\frac{3}{5}$
∴sinα=sin($α+\frac{π}{3}$-$\frac{π}{3}$)=sin($α+\frac{π}{3}$)cos$\frac{π}{3}$-cos($α+\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{{-4+3\sqrt{3}}}{10}$.
故答案為$\frac{{-4+3\sqrt{3}}}{10}$.
點評 本題考查三角函數(shù)的定義,考查差角正弦函數(shù),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理. | |
B. | “在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結(jié)論放到空間中也成立”此推理屬于合情推理. | |
C. | “a≤0”是“函數(shù)f(x)=ax+lnx存在極值”的必要不充分條件. | |
D. | 若$x∈(0\;,\;\;\frac{π}{2}]$,則$sinx+\frac{2}{sinx}$的最小值為$2\sqrt{2}$. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}+\frac{y^2}{m}=1$ | B. | $\frac{x^2}{m}-\frac{y^2}{2}=1$ | C. | $\frac{x^2}{16}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}+\frac{y^2}{16}=1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com