已知函數(shù),a∈R.
(1)求f(x)的極值;
(2)若關(guān)于x的不等式在(0,+∞)上恒成立,求k的取值范圍;
(3)證明:
【答案】分析:(1)先求函數(shù)的定義域,在函數(shù)定義域內(nèi)連續(xù)可導(dǎo),討論滿足f′(x)=0的點附近的導(dǎo)數(shù)的符號的變化情況,來確定極值點,求出極值.
(2)要使不等式在(0,+∞)恒成立,只需求函數(shù)在(0,+∞)的最大值,建立參數(shù)k的等量關(guān)系,解之即可.
(3)先由(1)知,lnx-x+1≤0,從而有l(wèi)nn2≤n2-1,再進行求和,利用放縮法,然后用立項求和的方法進行求和即可得證.
解答:解:(1),令f'(x)=0,得x=ea,當(dāng)x∈(0,ea)時,f'(x)>0
函數(shù)f(x)為增函數(shù),當(dāng)x∈(ea,+∞)時,f'(x)<0,函數(shù)f(x)為減函數(shù),
故f(x)有極大值為f(ea)=e-a,(5分)
(2)由(1)知,令a=1,
,
故只需,所以得-1<k≤1(10分)
(3)由(1)知f(x)≤e-a,令a=0,則有l(wèi)nx≤x-1,
∵n∈N,n≥2∴l(xiāng)nn2≤n2-1,
,

=
==(14分)
點評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及恒成立與不等式的證明問題,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省百所重點高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省常州高級中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水一中高一(下)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的最大值;
(2)如果對于區(qū)間上的任意一個x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省梅州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習(xí)冊答案