【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標(biāo);
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.

【答案】
(1)解:∵A的坐標(biāo)為(0,6),N(0,2),

∴AN=4,

∵∠ABN=30°,∠ANB=90°,

∴AB=2AN=8,

∴由勾股定理可知:NB= = ,

∴B( ,2).


(2)解:連接MC,NC

∵AN是⊙M的直徑,

∴∠ACN=90°,

∴∠NCB=90°,

在Rt△NCB中,D為NB的中點,

∴CD= NB=ND,

∴∠CND=∠NCD,

∵M(jìn)C=MN,

∴∠MCN=∠MNC,

∵∠MNC+∠CND=90°,

∴∠MCN+∠NCD=90°,

即MC⊥CD.

∴直線CD是⊙M的切線.


【解析】(1)在Rt△ABN中,求出AN、AB即可解決問題;(2)連接MC,NC.只要證明∠MCD=90°即可;
【考點精析】根據(jù)題目的已知條件,利用切線的判定定理的相關(guān)知識可以得到問題的答案,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1所示,ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;

①若∠B90°則∠F   

②若∠Ba,求∠F的度數(shù)(用a表示);

2)如圖2所示,若點GCB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運(yùn)動,∠F+H的值是否變化?若變化,請說明理由;若不變,請求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,對角線ACBD交于點O,且分別平分∠DAB∠ABC

1)請求出∠AOB的度數(shù),寫出AD、AB、BC之間的等量關(guān)系,并給予證明.

2)設(shè)點P為對角線AC上一點,PB=5,若AD+BC=16,四邊形ABCD的面積為,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.

(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數(shù).
②若⊙O的半徑為2 ,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ACDF,直線AF分別與直線BDCE相交于點G,H,∠1=∠2,求證:∠C=∠D

解:∵∠1=∠2(已知)

1=∠DGH   。

∴∠2   ( 等量代換 )

      (同位角相等,兩直線平行)

∴∠C   (兩直線平行,同位角相等)

又∵ACDF   。

∴∠D=∠ABG   。

∴∠C=∠D    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,同時將點A(﹣10)、B3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到AB的對應(yīng)點C、D.連接AC,BD

1)求點CD的坐標(biāo),并描出A、B、CD點,求四邊形ABDC面積;

2)在坐標(biāo)軸上是否存在點P,連接PAPC使SPACS四邊形ABCD?若存在,求點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校利用五一組織老師去婁山關(guān)進(jìn)行紅色文化拓展活動,現(xiàn)有甲、乙兩家旅行 社可供選擇,票價都是/人,甲旅行社的優(yōu)惠方案是:按總價打八五折;乙旅行社 的優(yōu)惠方案是:前人按原價付費(fèi),超過的部分折優(yōu)惠.該校有教師人.

1)設(shè)總價為元.寫出之間的函數(shù)關(guān)系式;

2)在不曉得該校人數(shù)的情況下,請給學(xué)校提出比較省錢的購票建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是(  )

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點O,PBAC,PCBD,PB、PC相交于點P.

(1)猜想四邊形PCOB是什么四邊形,并說明理由;

(2)當(dāng)矩形ABCD滿足什么條件時,四邊形PCOB是正方形.

查看答案和解析>>

同步練習(xí)冊答案