【題目】已知在 數(shù)軸上對應的數(shù)分別用表示,且.是數(shù)軸的一動點.

⑴在數(shù)軸上標出的位置,并求出之間的距離;

⑵數(shù)軸上一點點24個單位的長度,其對應的數(shù)滿足,當點滿足時,求點對應的數(shù).

⑶動點從原點開始第一次向左移動1個單位,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,……點能移動到與重合的位置嗎?若能,請?zhí)骄康趲状我苿訒r重合;若不能,請說明理由.

【答案】(1)30;(2)-16或-8;(3)見解析.

【解析】

⑴根據(jù)“非負數(shù)的和為0,則每一個非負數(shù)為0”,可以依次求出的值,從而使問題解決;⑵.根據(jù),所以 ;結(jié)合⑴問的結(jié)論和本問的條件可以求出的值;時,其一,點 之間;其二.點的延長線上.⑶主要是要找移動的規(guī)律:主要是找出向右移動的距離規(guī)律,從而探究出移動重合的存在性和移動重合的次數(shù).

⑴. ∵,且

;解得:

∴在數(shù)軸上分別對應的是.表示在數(shù)軸上:

⑵. ∵數(shù)軸上一點點24個單位的長度,可能在左,也可能在右;“右加左減”.

①.當點 之間時,;(見下面示意圖)

解得:

點對應的數(shù)是;

②. 點的延長線上時,(見下面示意圖)

,.

點對應的數(shù)是

③.若點的延長線上“”不會成立.

點對應的數(shù)是.

⑶.點能移動到與重合的位置,不能移動到與重合的位置.

理由如下:

第一次點M表示-1,第二次點P表示2,依次-3,4,-5,6…
則第n次為(-1)nn,
點A表示10,則第10次M與A重合;
點B表示-20,點M與點B不重合.∴點移動10次與重合,點M與點B不重合.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )

A. 對載人航天器“神舟十號”的零部件的檢查適合采用抽樣調(diào)查的方式

B. 某市天氣預報中說“明天降雨的概率是80%”,表示明天該市有80%的地區(qū)降雨

C. 擲一枚硬幣,正面朝上的概率為

D. 0.1,0.01,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出版社為了了解在校大學生最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),在廣州某大學進行隨機調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(如圖所示),請你結(jié)合圖中的信息解答下列問題:

(1)求被調(diào)查的學生人數(shù);

(2)補全條形統(tǒng)計圖;

(3)已知該校有12000名學生,估計全校最喜愛文學類圖書的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,ACBE相交于點F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD為平行四邊形,AD2,BE∥AC,DEAC的延長線于F點,交BEE.

1)求證:EFDF;

2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段,點為線段上的一個動點,點分別是的中點.

(1)若點恰好是中點,則 ;

(2),的長;

(3)試利用字母代替數(shù)的方法,說明不論取何值(不超過),的長不變.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某網(wǎng)約車公司的專車計價規(guī)則.

計費項目

起租價

里程費

時長費

遠途費

單價

15

25/公里

15/

1/公里

:車費由起租價、里程費、時長費、遠途費四部分構(gòu)成,其中起租價15元含10分鐘時長費和5公里里程費,遠途費的收取方式為:行車里程10公里以內(nèi)(10公里)不收遠途費,超過10公里的,超出部分每公里收1元.

(1)若小李乘坐專車,行車里程為20公里,行車時間為30分,則需付車費_______元.

(2)若小李乘坐專車,行車里程為公里,平均時速為,則小李應付車費多少元? (用含的代數(shù)式表示)

(3)小李與小王各自乘坐專車,行車車費之和為76元,里程之和為15公里(其中小王的行車里程不超過5公里).如果行駛時間均為 20分鐘,那么這兩輛專車此次的行駛路程各為多少公里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測傾器高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對泄漏有害氣體進行清理,線段DE表示氣體泄漏時車間內(nèi)危險檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關系(0≤x≤40),反比例函數(shù)y=對應曲線EF表示氣體泄漏控制之后車間危險檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關系(40≤x≤?).根據(jù)圖象解答下列問題:

(1)危險檢測表在氣體泄漏之初顯示的數(shù)據(jù)是   ;

(2)求反比例函數(shù)y=的表達式,并確定車間內(nèi)危險檢測表恢復到氣體泄漏之初數(shù)據(jù)時對應x的值.

查看答案和解析>>

同步練習冊答案