【題目】如圖,在△ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過點(diǎn)ABC的平行線交CE的延長線于點(diǎn)F,且AFBD,連接BF

1)求證:DBC的中點(diǎn);

2)若BAAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

【答案】1)詳見解析;(2)四邊形AFBD是菱形,理由詳見解析.

【解析】

1)首先推知AFE≌△DCEAAS),則其對應(yīng)邊相等AFCD,結(jié)合已知條件AFBD得到:BDCD,即DBC的中點(diǎn);

2)四邊形AFBD是菱形.連接FD.構(gòu)造平行四邊形AFDC.根據(jù)對角線相互垂直的平行四邊形是菱形證得結(jié)論:四邊形AFBD是菱形.

1)證明:AFBC,

∴∠AFEDCEFAECDE

EAD的中點(diǎn),

AEDE

∴△AFE≌△DCEAAS).

AFCD

AFBD,

BDCD,即DBC的中點(diǎn);

2)四邊形AFBD是菱形.理由如下:

連接FDAFBDAFBD

四邊形AFBD是平行四邊形.

同理可證四邊形AFDC是平行四邊形.

FDAC

BAAC,

BAFD

四邊形AFBD是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BE是⊙O的弦,BC是∠ABE的平分線且交⊙O于點(diǎn)C,連接ACCE,過點(diǎn)CCDBE,交BE的延長線于點(diǎn)D

1)∠DCE   CBE;(填”“

2)求證:DC是⊙O的切線;

3)若⊙O的直徑為10,sinBAC,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一項(xiàng)工程,由甲、乙兩個工程隊(duì)共同完成,若乙工程隊(duì)單獨(dú)完成需要60天;若兩個工程隊(duì)合作18天后,甲工程隊(duì)再單獨(dú)做10天也恰好完成.

1)甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需要幾天?

2)若甲工程隊(duì)每天施工費(fèi)用為0.6萬元,乙工程隊(duì)每天施工費(fèi)用為0.35萬元,要使該項(xiàng)目總施工費(fèi)用不超過22萬元,則乙工程隊(duì)至少施工多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線經(jīng)過A(-30),B(10),C(0,-3)三點(diǎn),其頂點(diǎn)為D,對稱軸是直線,x軸交于點(diǎn)H

1)求該拋物線的解析式;

2)若點(diǎn)P是該拋物線對稱軸上的一個動點(diǎn),求△PBC周長的最小值;

3)如圖2,若E是線段AD上的一個動點(diǎn)(EA、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S

①試求Sm的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.

的面積等于______;

若四邊形DEFG中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法不要求證明________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個運(yùn)輸小隊(duì)分別從兩個倉庫以相同的工作效率調(diào)運(yùn)一批物資,兩隊(duì)同時開始工作.第二小隊(duì)工作5天后,由于技術(shù)問題檢修設(shè)備5天,為趕上進(jìn)度,再次開工后他們將工作效率提高到原先的2倍,結(jié)果和第一小隊(duì)同時完成任務(wù).在兩隊(duì)調(diào)運(yùn)物資的過程中,兩個倉庫物資的剩余量y t與第一小隊(duì)工作時間x天的函數(shù)圖像如圖所示.

1)①求線段AC所表示的yx之間的函數(shù)表達(dá)式;

②求點(diǎn)F的坐標(biāo),并解釋點(diǎn)F的實(shí)際意義.

2)如果第二小隊(duì)沒有檢修設(shè)備,按原來的工作效率正常工作,那么他們完成任務(wù)的天數(shù)是 天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解某學(xué)校大班額現(xiàn)狀,某市決定通過新建學(xué)校來解決該問題.經(jīng)測算,建設(shè)6個小學(xué),5個中學(xué),需費(fèi)用13800萬元,建設(shè)10個小學(xué),7個中學(xué),需花費(fèi)20600萬元.

1)求建設(shè)一個小學(xué),一個中學(xué)各需多少費(fèi)用.

2)該市共計(jì)劃建設(shè)中小學(xué)80所,其中小學(xué)的建設(shè)數(shù)量不超過中學(xué)建設(shè)數(shù)量的1.5倍.設(shè)建設(shè)小學(xué)的數(shù)量為x個,建設(shè)中小學(xué)校的總費(fèi)用為y萬元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②如何安排中小學(xué)的建設(shè)數(shù)量,才能使建設(shè)總費(fèi)用最低?

3)受國家開放二胎政策及外來務(wù)工子女就讀的影響,預(yù)計(jì)在小學(xué)就讀人數(shù)會有明顯增加,現(xiàn)決定在(2)中所定的方案上增加投資以擴(kuò)大小學(xué)的就讀規(guī)模,若建設(shè)小學(xué)總費(fèi)用不超過建設(shè)中學(xué)的總費(fèi)用,則每所小學(xué)最多可增加多少費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的點(diǎn)P和圖形M,給出如下定義:Q為圖形M上任意一點(diǎn),如果兩點(diǎn)間的距離有最大值,那么稱這個最大值為點(diǎn)P與圖形M間的開距離,記作.已知直線x軸交于點(diǎn)A,與y軸交于點(diǎn)B,的半徑為1

1)若,

①求的值;

②若點(diǎn)C在直線上,求的最小值;

2)以點(diǎn)A為中心,將線段順時針旋轉(zhuǎn)得到,點(diǎn)E在線段組成的圖形上,若對于任意點(diǎn)E,總有,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn).

1)求拋物線的解析式.

2)點(diǎn)軸負(fù)半軸上的一點(diǎn),且,點(diǎn)在對稱軸右側(cè)的拋物線上運(yùn)動,連接,與拋物線的對稱軸交于點(diǎn),連接,當(dāng)平分時,求點(diǎn)的坐標(biāo).

3)直線交對稱軸于點(diǎn),是坐標(biāo)平面內(nèi)一點(diǎn),請直接寫出全等時點(diǎn)的坐標(biāo)__________.

查看答案和解析>>

同步練習(xí)冊答案