【題目】如圖,四邊形內(nèi)接于,的直徑,相交于點,且

1)求證:;

2)分別延長交于點,過點的延長線于點,若,,求的長.

【答案】(1)見解析;(2)

【解析】

1)利用DC2=CECA,加上∠DCE=ACD可判斷△CDE∽△CAD,則∠CDB=CAD,從而得到BC=CD;

2)連接OC,先證ADOC,由平行線分線段成比例性質(zhì)定理求得PC的值,再由割線定理PCPD=PBPA求得半徑,根據(jù)勾股定理求得AC,再證明AFD∽△ACB,設(shè)FD=x,由比例線段得到AF=x,,在RtAFP中,利用勾股定列出方程,求解得DF.也可連接,過點垂直于和△PGO∽△PFA,根據(jù)相似三角形的性質(zhì)和等量代換可得,根據(jù)線段之間的關(guān)系,即可解決.

1)證明:,

,

,

,

∵四邊形內(nèi)接于,

2)解:方法一:如圖,連接

,

,

,

,

,

,

,,

,即,

中,

,

是直徑,

,

,

中,設(shè),則,

∴在中有,,

求得

方法二;連接,過點垂直于,

易證,可得

PGO∽△PFA,可得,

可得,,由方法一中代入,

即可得出

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式為“單人組”和“雙人組”.小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點A(1,0),B(4,0),交y軸于點C;

1)求拋物線的解析式(用一般式表示);

2)點Dy軸右側(cè)拋物線上一點,是否存在點D使SABC=SABD?若存在,請求出點D坐標(biāo);若不存在,請說明理由;

3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是一位同學(xué)的一道作圖題:

已知線段a、bc(如圖),求作線段x,使

他的作法如下:

1)以點O為端點畫射線,

2)在上依次截取,

3)在上截取

4)聯(lián)結(jié),過點B,交于點D

所以:線段________就是所求的線段x

①試將結(jié)論補完整

②這位同學(xué)作圖的依據(jù)是________

③如果,,,試用向量表示向量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P的直徑BA延長線上的一個動點,∠P的另一邊交于點CD,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6經(jīng)過點C、D,圓心距

(1)當(dāng)m=6時,求線段CD的長;

(2)設(shè)圓心O1在直線上方,試用n的代數(shù)式表示m;

(3)POO1在點P的運動過程中,是否能成為以OO1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年歌舞劇《白毛女》將在廣州歌舞劇院公演,對團體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價元,這樣按原定票價需花費元購買的門票現(xiàn)在只需花費了元就可以買到了.

1)求每張門票的原定票價;

2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)兩次降價后降為元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1B2m,0),C3m,0)是平面直角坐標(biāo)系中兩點,其中m為常數(shù),且m0,E0n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把ADC繞點C逆時針旋轉(zhuǎn)90°A′D′C′,連接ED′,拋物線)過EA′兩點.

1)填空:∠AOB= °,用m表示點A′的坐標(biāo):A′ , );

2)當(dāng)拋物線的頂點為A′,拋物線與線段AB交于點P,且時,D′OEABC是否相似?說明理由;

3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過MMN⊥y軸,垂足為N

a,b,m滿足的關(guān)系式;

當(dāng)m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要印刷一批藝術(shù)節(jié)的宣傳資料,在需要支付制版費100元和每份資料0.3元印刷費的前提下,甲、乙兩個印刷廠分別提出了不同的優(yōu)惠條件.甲印刷廠提出:所有資料的印刷費可按9折收費;乙印刷廠提出:凡印刷數(shù)量超過200份的,超過部分的印刷費可按8折收費.

1)設(shè)該學(xué)校需要印刷藝術(shù)節(jié)的宣傳資料x份,支付甲印刷廠的費用為y元,寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

2)如果該學(xué)校需要印刷藝術(shù)節(jié)的宣傳資料600份,那么應(yīng)該選擇哪家印刷廠比較優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有AB兩地,小明騎自行車從A地去B地,小剛騎電動車從B地去A地然后立即原路返回到B地,如圖是兩人離B地的距離y(千米)和行駛時間x(小時)之間的函數(shù)圖象.請根據(jù)圖象回答下列問題:

(1)AB兩地的距離是_____,小明行駛的速度是_____.

(2)若兩人間的距離不超過3千米時,能夠用無線對講機保持聯(lián)系,那么小剛從A地原路返回到B地途中,兩人能夠用無線對講機保持聯(lián)系的x的取值范圍是______

查看答案和解析>>

同步練習(xí)冊答案