【題目】(12分)如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,⊙O的半徑為3, 的長為π.
(1)直線CD與⊙O相切嗎?說明理由。
(2)求陰影部分的面積.
【答案】(1)相切(2)
【解析】試題分析:(1)、首先連接OC,根據(jù)弧的長度得出∠BOC=60°,然后根據(jù)等腰三角形的性質得出∠D=∠CAD=30°,從而得出∠OCD=90°,即得出切線;(2)、根據(jù)題意得出∠AOC=120°,然后根據(jù)陰影部分的面積=扇形AOC的面積減去△AOC的面積得出答案.
試題解析:(1)相切。
理由:連接OC,設∠BOC的度數(shù)為n°,則=π,
解得n=60°,
∴∠A=∠BOC=30°,
∵AC=CD,
∴∠A=∠D=30°,
∴∠OCD=180°﹣∠BOC﹣∠D=180°﹣30°﹣60°=90°,
∴OC⊥CD,
∴CD是⊙O的切線;
(2)解:作CH⊥OB于H,則CH=OCsin60°=3×=,
∵∠BOC=60°,
∴∠AOC=120°,
∴S陰影=S扇形OAC﹣S△OAC=﹣×3×=.
科目:初中數(shù)學 來源: 題型:
【題目】國家游泳中心﹣﹣“水立方”是北京2008年奧運會場館之一,它的外層膜的展開面積約為260 000平方米,將260 000用科學記數(shù)法表示應為( )
A.0.26×106
B.26×104
C.2.6×106
D.2.6×105
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算錯誤的是( )
A.(﹣2x)3=﹣2x3
B.﹣a2a=﹣a3
C.(﹣x)9+(﹣x)9=﹣2x9
D.(﹣2a3)2=4a6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點,且AE=BC,∠1=∠2.
(1)求證:Rt△ADE與Rt△BEC全等;
(2)求證:△CDE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某空調生產廠家想了解一批空調的質量,把倉庫中的空調編上號,然后抽取了編號為5的倍數(shù)的空調進行檢驗,你認為這種調查方式________.(填“合適”或“不合適”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把﹣1﹣(+4)﹣(﹣3)+(﹣6)+(+2)寫成省略加號的和的形式,正確的是( 。
A. ﹣1﹣4﹣3﹣6+2 B. ﹣1+4+3﹣6+2 C. ﹣1﹣4+3﹣6+2 D. ﹣1﹣4﹣3+6+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
(下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整.)
解:∵AB∥CD (已知)
∴∠A=(兩直線平行,內錯角相等)
又∵∠A=∠D()
∴ =(等量代換)
∴AC∥DE ()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后得到△A′O′B.若反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點C,S△ABO=4,tan∠BAO=2,則k的值為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com