【題目】如圖,在△ABC中,∠ACB=2∠B.
(1)作∠ACB的平分線交AB于D(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法);
(2)若AB=10,AC=6,求△ACD的周長(zhǎng).
【答案】(1)作圖見(jiàn)解析;(2)16.
【解析】
(1)以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交CA、CB于兩點(diǎn),以這兩點(diǎn)為圓心,大于這兩點(diǎn)距離的一半為半徑畫(huà)弧,兩弧交于一點(diǎn),作過(guò)這點(diǎn)和點(diǎn)C的直線交AB于D點(diǎn),則CD平分∠ACB;
(2)根據(jù)角平分線的定義和等腰三角形的性質(zhì)即可得到結(jié)論.
(1)如圖所示,線段CD即為所求;
(2)∵CD平分∠ACB,
∴∠ACB=2∠DCB,
∵∠ACB=2∠B,
∴∠B=∠DCB,
∴BD=CD,
∴△ACD的周長(zhǎng)=AD+CD+AC=AD+BD+AC=AB+AC=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏思考解決如下問(wèn)題:
原題:如圖1,四邊形ABCD中,,點(diǎn)P,Q分別在四邊形ABCD的邊BC,CD上,,求證:.
______;
小敏進(jìn)行探索,如圖2,將點(diǎn)P,Q的位置特殊化,使,,點(diǎn)E,F分別在邊BC,CD上,此時(shí)她證明了請(qǐng)你證明此時(shí)結(jié)論;
受以上的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為E,F,請(qǐng)你繼續(xù)完成原題的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O(0,0)、B(a,b),且a、b滿足1﹣2a+a2+(b)2=0.
(1)求a,b的值;
(2)若點(diǎn)A在x軸正半軸上,且OA=2,在平面內(nèi)有一動(dòng)點(diǎn)Q(不在x軸上),QO=m,QA=n,QB=p,且p2=m2+n2,求∠OQA的度數(shù).
(3)閱讀以下內(nèi)容:對(duì)于實(shí)數(shù)a、b有(a﹣b)2≥0,∴a2﹣2ab+b2≥0,
即a2+b2≥2ab.
利用以上知識(shí),在(2)的條件下求△AOQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.
求:(1)坡頂A到地面PO的距離;
(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,與是兩個(gè)全等的等邊三角形,,下列結(jié)論不正確的是( )
A.B.直線垂直平分
C.D.四邊形是軸對(duì)稱圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,并且假分?jǐn)?shù)都可化為帶分?jǐn)?shù).類比分?jǐn)?shù),對(duì)于分式也可以定義:對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如:
解決下列問(wèn)題:
(1)分式是________分式(填“真”或“假”);
(2)假分式可化為帶分式_________的形式;請(qǐng)寫(xiě)出你的推導(dǎo)過(guò)程;
(3)如果分式的值為整數(shù),那么的整數(shù)值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)A在x軸上,頂點(diǎn)B的坐標(biāo)為(4,6),直線y=kx+3k將平行四邊形OABC分割成面積相等的兩部分,則k的值是( ).
A. B. C.- D.﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(diǎn)(A在B左),y軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段BC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以B、C、E、P為頂點(diǎn)且以BC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com