【題目】如圖,一次函數(shù)()的圖象與坐標(biāo)軸交于A,B兩點(diǎn),與反比例函數(shù)()的圖象交于M,N兩點(diǎn),過點(diǎn)M作MC⊥y軸于點(diǎn)C,已知CM=1.
(1)求的值;
(2)若,求反比例函數(shù)的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)P是x軸(除原點(diǎn)O外)上一點(diǎn),將線段CP繞點(diǎn)P按順時(shí)針或逆時(shí)針旋轉(zhuǎn)90°得到線段PQ,當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點(diǎn)Q的坐標(biāo);如果不能,請(qǐng)說明理由.
【答案】(1)5;(2);(3)點(diǎn)Q的坐標(biāo)為(2+,﹣2+)或(2﹣,﹣2﹣)或(﹣2,﹣2).
【解析】
(1)根據(jù)點(diǎn)M的坐標(biāo)代入反比例關(guān)系:中,可得結(jié)論;
(2)根據(jù)△ACM∽△ADN,得,由CM=1得DN=4,同理得N的坐標(biāo),代入反比例函數(shù)式中可得k2的值;
(3)如圖2,點(diǎn)P在x軸的正半軸上時(shí),繞P順時(shí)針旋轉(zhuǎn)到點(diǎn)Q,根據(jù)△COP≌△PHQ,得CO=PH,OP=QH,設(shè)P(x,0),表示Q(x+4,x),代入反比例函數(shù)的關(guān)系式中可得Q的兩個(gè)坐標(biāo);
如圖3,點(diǎn)P在x軸的負(fù)半軸上時(shí);
如圖4,點(diǎn)P在x軸的正半軸上時(shí),繞P逆時(shí)針旋轉(zhuǎn)到點(diǎn)Q,同理可得結(jié)論.
解:(1)如圖1,
∵MC⊥y軸于點(diǎn)C,且CM=1,
∴M的橫坐標(biāo)為1,當(dāng)x=1時(shí),y=k1+5,
∴M(1,k1+5),
∵M在反比例函數(shù)的圖象上,
∴1×(k1+5)=k2,
∴k2﹣k1=5;
(2)如圖1,過N作ND⊥y軸于D,
∴CM∥DN,
∴△ACM∽△ADN,
∴,
∵CM=1,
∴DN=4,當(dāng)x=4時(shí),y=4k1+5,
∴N(4,4k1+5),
∴4(4k1+5)=k2①,
由(1)得:k2﹣k1=5,
∴k1=k2﹣5②,
把②代入①得:4(4k2﹣20+5)=k2,k2=4,
∴反比例函數(shù)的解析式:;
(3)當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能在反比例函數(shù)的圖象上;
如圖2,CP=PQ,∠CPQ=90°,過Q作QH⊥x軸于H,
易得:△COP≌△PHQ,
∴CO=PH,OP=QH,
由(2)知:反比例函數(shù)的解析式:;
當(dāng)x=1時(shí),y=4,
∴M(1,4),
∴OC=PH=4,
設(shè)P(x,0),
∴Q(x+4,x),
當(dāng)點(diǎn)Q落在反比例函數(shù)的圖象上時(shí),x(x+4)=4,x2+4x+4=8,x=﹣2±,
當(dāng)x=﹣2+時(shí),x+4=2+,
如圖2,Q(2+,﹣2+);
當(dāng)x=﹣2﹣時(shí),x+4=2﹣,如圖3,Q(2﹣,﹣2﹣);
如圖4,CP=PQ,∠CPQ=90°,
設(shè)P(x,0),過P作GH∥y軸,過C作CG⊥GH,過Q作QH⊥GH,易得:△CPG≌△PQH,
∴PG=QH=4,CG=PH=x,
∴Q(x﹣4,﹣x),
同理得:﹣x(x﹣4)=4,解得:x1=x2=2,
∴Q(﹣2,﹣2),
綜上所述,點(diǎn)Q的坐標(biāo)為(2+,﹣2+)或(2﹣,﹣2﹣)或(﹣2,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)在軸上,在軸上,把矩形沿對(duì)角線所在的直線對(duì)折,點(diǎn)恰好落在反比例函數(shù)的圖象上點(diǎn)處,與軸交于點(diǎn),延長(zhǎng)交軸于點(diǎn),點(diǎn)剛好是的中點(diǎn).已知的坐標(biāo)為.
(1)求反比例函數(shù)的函數(shù)表達(dá)式;
(2)若是反比例函數(shù)圖象上的一點(diǎn),點(diǎn)在軸上,若以為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)的坐標(biāo)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張直角三角形紙片ABC,∠ACB=90°,AB=10,AC=6,點(diǎn)D為BC邊上的任一點(diǎn),沿過點(diǎn)D的直線折疊,使直角頂點(diǎn)C落在斜邊AB上的點(diǎn)E處,當(dāng)△BDE是直角三角形時(shí),則CD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC。
(1)尺規(guī)作圖:作弦CD,使CD=BC(點(diǎn)D不與B重合),連接AD;(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖中,求四邊形ABCD的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形沿對(duì)折,點(diǎn)落在處,點(diǎn)落在邊上的處,與相交于點(diǎn).若,則周長(zhǎng)的大小為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分線交AC于點(diǎn)D,在AB上取點(diǎn)O,以點(diǎn)O為圓心經(jīng)過B、D兩點(diǎn)畫圓分別與AB、BC相交于點(diǎn)E、F(異于點(diǎn)B).
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)E恰好是AO的中點(diǎn),求的長(zhǎng);
(3)若CF的長(zhǎng)為,①求⊙O的半徑長(zhǎng);②點(diǎn)F關(guān)于BD軸對(duì)稱后得到點(diǎn)F′,求△BFF′與△DEF′的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我縣為了創(chuàng)建省級(jí)文明縣城,全面推行中小學(xué)校“社會(huì)主義核心價(jià)值觀”進(jìn)課堂.某校對(duì)全校學(xué)生進(jìn)行了檢測(cè)評(píng)價(jià),檢測(cè)結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個(gè)等級(jí).并隨機(jī)抽取若干名學(xué)生的檢測(cè)結(jié)果作為樣本進(jìn)行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
請(qǐng)根據(jù)統(tǒng)計(jì)表和統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次隨機(jī)抽取的樣本容量為__________;
(2)統(tǒng)計(jì)表中_________,_________.
(3)若該校共有學(xué)生5000人,請(qǐng)你估算該校學(xué)生在本次檢測(cè)中達(dá)到“(優(yōu)秀)”等級(jí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線。
(1)求頂點(diǎn)坐標(biāo),對(duì)稱軸;
(2)取何值時(shí), 隨的增大而減小?
(3)取何值時(shí), =0; 取何值時(shí), >0; 取何值時(shí), <0 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,
∴≥,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值.
根據(jù)上述內(nèi)容,回答下列問題:
若m>0,只有當(dāng)m= 時(shí),有最小值 .
思考驗(yàn)證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證≥,并指出等號(hào)成立時(shí)的條件.
探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com