【題目】已知二次函數(shù)y=2x2﹣4x﹣6.
(1)寫(xiě)出拋物線的開(kāi)口方向,對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
(2)在平面直角坐標(biāo)系中,畫(huà)出這個(gè)二次函數(shù)的圖象;

(3)當(dāng)x取何值時(shí),y隨x的增大而減少?
(4)求函數(shù)圖象與兩坐標(biāo)軸交點(diǎn)所圍成的三角形的面積.

【答案】
(1)解:∵a=2>0,

∴拋物線的開(kāi)口向上,

∵y=2x2﹣4x﹣6=2(x﹣1)2﹣8,

∴拋物線對(duì)稱(chēng)軸為直線x=1,

頂點(diǎn)坐標(biāo)為(1,﹣8)


(2)解:令y=0,2x2﹣4x﹣6=0,

解得x1=﹣1,x2=3,

所以,拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0),(3,0),

令x=0,則y=﹣6,

所以,拋物線與y軸的交點(diǎn)坐標(biāo)為(0,﹣6),

作出函數(shù)圖象如圖所示


(3)解:x<1時(shí),y隨x的增大而減少
(4)解:函數(shù)圖象與x軸的交點(diǎn)設(shè)為A、B,則AB=3﹣(﹣1)=3+1=4,

設(shè)與y軸的交點(diǎn)坐標(biāo)為(0,﹣6),則OC=6,

所以,函數(shù)圖象與兩坐標(biāo)軸交點(diǎn)所圍成的三角形的面積= ABOC= ×4×6=12


【解析】(1)根據(jù)二次項(xiàng)系數(shù)大于0判斷出開(kāi)口向上,將二次函數(shù)解析式整理成頂點(diǎn)式形式,然后寫(xiě)成對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)即可;(2)求出二次函數(shù)與坐標(biāo)軸的交點(diǎn),然后作出函數(shù)圖象即可;(3)根據(jù)函數(shù)圖象與二次函數(shù)的增減性解答;(4)利用三角形的面積公式列式計(jì)算即可得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱(chēng)的,并寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo) ( 。,( 。,( 。;

2直接寫(xiě)出ABC的面積為 ;

3軸上畫(huà)點(diǎn)P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC,ACB=90°,DAB的中點(diǎn),四邊形BCED為平行四邊形,DE,AC相交于F.連接DC,AE.

(1)試確定四邊形ADCE的形狀,并說(shuō)明理由

(2)AB=16,AC=12,求四邊形ADCE的面積.

(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE為正方形?請(qǐng)給予證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BD,CD分別是過(guò)⊙O上點(diǎn)B,C的切線,且∠BDC=120°,連接AC.

(1)求∠A的度數(shù);
(2)若點(diǎn)D到BC的距離為2,那么⊙O的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出拋物線的開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo).
(3)y= x2﹣x+3(公式法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)7x(5x+2)=6(5x+2)
(2)關(guān)于x的一元二次方程x2+3x+m﹣1=0有兩個(gè)實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】東東玩具商店用500元購(gòu)進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購(gòu)進(jìn)第二批這種悠悠球,所購(gòu)數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.

(1)求第一批悠悠球每套的進(jìn)價(jià)是多少元;

(2)如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套悠悠球的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的兩個(gè)圓盤(pán)中,指針落在每一個(gè)數(shù)上的機(jī)會(huì)均等,那么兩個(gè)指針同時(shí)落在偶數(shù)上的概率是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題6分)如圖,已知△ABC,∠C=Rt∠,AC<BCDBC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.

1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫(xiě)作法,保留作圖痕跡);

2)連結(jié)AD,若∠B=37°,求∠CAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案