如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2的點A處發(fā)出,把球看成點,其運行的高度)與運行的水平距離滿足關(guān)系式,已知球網(wǎng)與O點的水平距離為9,高度為2.43,球場的邊界距O點水平距離為18。

(1)當(dāng)時,求的關(guān)系式(不要求寫出自變量的取值范圍);

(2)當(dāng)時,球能否越過球網(wǎng)?球會不會出界,請說明理由;

(3)若球一定能越過球網(wǎng),又不出邊界,求的取值范圍。

 

【答案】

(1)

(2)可越過球網(wǎng),球會出界;(3)

【解析】

試題分析:(1)當(dāng)時,,把(0,2)代入得解得 ∴

(2)當(dāng)

當(dāng)時,∴球會出界

(3)若符合題意,則當(dāng),當(dāng)時,

∵拋物線經(jīng)過A(0,2)∴

  解得:

考點:二次函數(shù)

點評:此題是一道二次函數(shù)與實際問題(網(wǎng)球)相結(jié)合的題,考察二次函數(shù)的頂點,對稱軸,最值

,二次函數(shù)的中考考試重點

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安徽)如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+2.6.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m.
(1)求y與x的關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)球能否越過球網(wǎng)?球會不會出界?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省泰州市泰興市西城中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案