如圖,AB是⊙O的直徑,BC是弦,OD⊥BC于E,交弧BC于D.
(1)請寫出五個(gè)不同類型的正確結(jié)論;
(2)若BC=8,ED=2,求⊙O的半徑.
(1)①BE=CE;②弧BD=弧DC;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD(答案不唯一);(2)5.
【解析】
試題分析:(1)AB是⊙O的直徑,則AB所對的圓周角是直角,BC是弦,OD⊥BC于E,則滿足垂徑定理的結(jié)論;
(2)OD⊥BC,則垂徑定理得BE=CE=BC=4,在Rt△OEB中,由勾股定理就可以得到關(guān)于半徑的方程,可以求出半徑.
試題解析:(1)不同類型的正確結(jié)論有:
①BE=CE;②弧BD=弧DC;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD;⑥AC⊥BC;⑦OE2+BE2=OB2;
⑧S△ABC=BC•OE;⑨△BOD是等腰三角形;⑩△BOE∽△BAC…
(2)∵OD⊥BC,∴BE=CE=BC=4.
設(shè)⊙O的半徑為R,則,
在Rt△OEB中,由勾股定理得: OE2+BE2=OB2,即,解得R=5.
∴⊙O的半徑為5.
考點(diǎn):1.垂徑定理;2.勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com