【題目】如圖,已知ABC和A″B″C″及點(diǎn)O.

(1)畫(huà)出ABC關(guān)于點(diǎn)O對(duì)稱(chēng)的△A′B′C′;

(2)若A″B″C″與A′B′C′關(guān)于點(diǎn)O′對(duì)稱(chēng),請(qǐng)確定點(diǎn)O′的位置;

(3)探究線段OC′與線段CC″之間的關(guān)系,并說(shuō)明理由.

【答案】見(jiàn)解析

【解析】

(1)連接三角形的各頂點(diǎn)與O的連線,并延長(zhǎng)相同長(zhǎng)度,找到對(duì)應(yīng)點(diǎn),順次連接.
(2)若△A″B″C″與△A′B′C′關(guān)于點(diǎn)O′對(duì)稱(chēng),連接兩組對(duì)應(yīng)點(diǎn)的連線的交點(diǎn)O就是對(duì)稱(chēng)點(diǎn).

(1)分別作A、B、C關(guān)于O的對(duì)稱(chēng)點(diǎn)A′、B′、C′,

連接AA′,BB′,CC′,

則如圖中的A′B′C′為所求.

(2)連接A″A′,C″C′,兩線交于O′,

則O′為所求.

(3)線段OC′與線段CC″之間的關(guān)系是CC″=2OC′,

理由是:CC′關(guān)于O對(duì)稱(chēng),

∴CO=OC′,

同理C′O′=C″O′,

OO′為三角形CC′C″的中位線,

∴CC″=2OC′.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請(qǐng)你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個(gè)數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個(gè)頂

點(diǎn)在紙帶的另一邊沿上,測(cè)得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行一場(chǎng)知識(shí)競(jìng)賽活動(dòng),競(jìng)賽共有4小題,每小題5分,答對(duì)給5分,答錯(cuò)或不答給0分,在該學(xué)校隨機(jī)抽取若干同學(xué)參加比賽,成績(jī)被制成不完整的統(tǒng)計(jì)表如下.

成績(jī)

人數(shù)頻數(shù)

百分比頻率

0

5

10

5

15

20

5

根據(jù)表中已有的信息,下列結(jié)論正確的是  

A. 共有40名同學(xué)參加知識(shí)競(jìng)賽

B. 抽到的同學(xué)參加知識(shí)競(jìng)賽的平均成績(jī)?yōu)?/span>10

C. 已知該校共有800名學(xué)生,若都參加競(jìng)賽,得0分的估計(jì)有100

D. 抽到同學(xué)參加知識(shí)競(jìng)賽成績(jī)的中位數(shù)為15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的角平分線,DFAB,垂足為F,DE=DG,△ADG和△AED的面積分別為5040,則△EDF的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AB為半圓O的直徑,半徑的長(zhǎng)為4cm,點(diǎn)C為半圓上一動(dòng)點(diǎn),過(guò)點(diǎn)C作CEAB,垂足為點(diǎn)E,點(diǎn)D為弧AC的中點(diǎn),連接DE,如果DE=2OE,求線段AE的長(zhǎng).

小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),將此問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題解決.

小華假設(shè)AE的長(zhǎng)度為xcm,線段DE的長(zhǎng)度為ycm.

(當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),AE的長(zhǎng)度為0cm),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.

下面是小何的探究過(guò)程,請(qǐng)補(bǔ)充完整:(說(shuō)明:相關(guān)數(shù)據(jù)保留一位小數(shù)).

(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

7

8

y/cm

0

1.6

2.5

3.3

4.0

4.7

   

5.8

5.7

當(dāng)x=6cm時(shí),請(qǐng)你在圖中幫助小何完成作圖,并使用刻度尺度量此時(shí)線段DE的長(zhǎng)度,填寫(xiě)在表格空白處:

(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;

(3)結(jié)合畫(huà)出的函數(shù)圖象解決問(wèn)題,當(dāng)DE=2OE時(shí),AE的長(zhǎng)度約為   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是正方形ABCD的對(duì)角線BD上一點(diǎn),EFBC,EGCD,垂足分別是F、G求證:AE=FG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點(diǎn)E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點(diǎn)G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案