(本小題滿分12分)
某公司銷售一種新型節(jié)能產品,現準備從國內和國外兩種銷售方案中選擇一種進行銷售.
若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數關系式為y =x+150,
成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w內(元)(利潤 = 銷售額-成本-廣告費).
若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為
常數,10≤a≤40),當月銷量為x(件)時,每月還需繳納x2 元的附加費,設月利潤為w外(元)(利潤 = 銷售額-成本-附加費).
(1)當x = 1000時,y =" " 元/件,w內 =" " 元;
(2)分別求出w內,w外與x間的函數關系式(不必寫x的取值范圍);
(3)當x為何值時,在國內銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值;
(4)如果某月要將5000件產品全部銷售完,請你通過分析幫公司決策,選擇在國內還是在國外銷售才能使所獲月利潤較大?
參考公式:拋物線的頂點坐標是.
(1)140 57500
(2)w外 = x2+(150)x
(3)a = 30
(4)當10≤ a <32.5時,選擇在國外銷售;
當a = 32.5時,在國外和國內銷售都一樣;
當32.5< a ≤40時,選擇在國內銷售
解析解:(1)140 57500;
(2)w內 = x(y -20)- 62500 = x2+130 x,
w外 = x2+(150)x.
(3)當x = = 6500時,w內最大;分
由題意得,
解得a1 = 30,a2 = 270(不合題意,舍去).所以 a = 30.
(4)當x = 5000時,w內 = 337500, w外 =.
若w內< w外,則a<32.5;
若w內 = w外,則a = 32.5;
若w內> w外,則a>32.5.
所以,當10≤ a <32.5時,選擇在國外銷售;
當a = 32.5時,在國外和國內銷售都一樣;
當32.5< a ≤40時,選擇在國內銷售.
科目:初中數學 來源:2011-2012學年九年級第二次模擬考試數學卷 題型:解答題
(本小題滿分12分)
如圖,反比例函數的圖象經過A、B兩點,根據圖中信息解答下列問題:
1.(1)寫出A點的坐標;
2.(2)求反比例函數的解析式;
3.(3)若點A繞坐標原點O旋轉90°后得到點C,請寫出點C的坐標;并求出直線BC的解析式.
查看答案和解析>>
科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯考數學卷 題型:解答題
(本小題滿分12分)
如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉,當DF邊與AB邊重合時,旋轉中止。不考慮旋轉開始和結束時重合的情況,設DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。
1.(1)問:始終與△AGC相似的三角形有 及 ;
2.(2)設CG=x,BH=y,求y關于x的函數關系式(只要求根據2的情況說明理由);
3.(3)問:當x為何值時,△AGH是等腰三角形?
查看答案和解析>>
科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯考數學卷 題型:解答題
(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:
1.(1)方案(I)是否可行?為什么?
2.(2)方案(II)是否切實可行?為什么?
3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇GSJY八年級第二次學情調研考試數學卷 題型:解答題
(本小題滿分12分)
1. (1)觀察發(fā)現
如(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為 . (2分)
2.(2)實踐運用
如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)
3.(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法. (5分)
查看答案和解析>>
科目:初中數學 來源:2014屆湖北省孝感市七年級下學期期中考試數學卷 題型:解答題
.(本小題滿分12分)
如圖,AD為△ABC的中線,BE為△ABD的中線。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數;
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com