【題目】已知在Rt△ABC中,∠BAC=90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對折,使點B落在點B′處,連結(jié)AB',BB',延長CD交BB'于點E,設(shè)∠ABC=2α(0°<α<45°).
(1)如圖1,若AB=AC,求證:CD=2BE;
(2)如圖2,若AB≠AC,試求CD與BE的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,將(2)中的線段BC繞點C逆時針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EF交BC于點O,設(shè)△COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).
【答案】(1)證明見解析;(2)CD=2BEtan2α;(3)sin(45°﹣α).
【解析】
(1)由翻折可知:BE=EB′,再利用全等三角形的性質(zhì)證明CD=BB′即可;
(2) 如圖 2 中, 結(jié)論:CD=2BEtan2α.只要證明△BAB′∽△CAD,可得,推出,可得CD=2BEtan2α;
(3) 首先證明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出sin(45°﹣α),由此即可解決問題.
(1)如圖1中,
∵B、B′關(guān)于EC對稱,
∴BB′⊥EC,BE=EB′,
∴∠DEB=∠DAC=90°,
∵∠EDB=∠ADC,
∴∠DBE=∠ACD,
∵AB=AC,∠BAB′=∠DAC=90°,
∴△BAB′≌CAD,
∴CD=BB′=2BE;
(2)如圖2中,結(jié)論:CD=2BEtan2α,
理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,
∴△BAB′∽△CAD,
∴,
∴,
∴CD=2BEtan2α;
(3)如圖 3中.在Rt△ABC中,∠ACB=90°﹣2α,
∵EC平分∠ACB,
∴∠ECB(90°﹣2α)=45°﹣α,
∵∠BCF=45°+α,
∴∠ECF=45°﹣α+45°+α=90°,
∴∠BEC+∠ECF=180°,
∴BB′∥CF,
∴sin(45°﹣α).
∵,
∴sin(45°﹣α).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班全體同學(xué)根據(jù)自己的愛好參加了六個興趣小組(每個學(xué)生必須參加且只參加一個),為了了解學(xué)生參加興趣小組的情況,班主任參加各個興趣小組的人數(shù)進(jìn)行了統(tǒng)計,繪制成了如圖不完整的扇形統(tǒng)計圖,已知參加“足球”小組的學(xué)生有7人,請解答下列問題:
(1)九(1)班共有 名學(xué)生;
(2)若該班參加“吉他”小組與“街舞”小組的人數(shù)相同,請你計算,“吉他”小組對應(yīng)扇形的圓心角的度數(shù);
(3)若“足球”興趣小組7個同學(xué)編號為1,2,3,4,5,6,7,把這些號碼制成大小相同的號碼球,放到A、B、C三個口袋中,A口袋中裝有1,2,3三個號碼球,B口袋中裝4,5兩個號碼球,C口袋中裝6,7兩個號碼球,從三個口袋中各隨機(jī)取出1個球,請用列表法或樹狀圖求取出的3個號碼球都是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市計劃在十二年內(nèi)通過公租房建設(shè),解決低收入人群的住房問題.已知前7年,每年竣工投入使用的公租房面積y(單位:百萬平方米)與時間x(第x年)的關(guān)系構(gòu)成一次函數(shù)(1≤x≤7且x為整數(shù)),且第一和第三年竣工投入使用的公租房面積分別為和百萬平方米;后5年每年竣工投入使用的公租房面積y(單位:百萬平方米)與時間x(第x年)的關(guān)系是y=﹣x+(7<x≤12且x為整數(shù)).
(1)已知第6年竣工投入使用的公租房面積可解決20萬人的住房問題,如果人均住房面積,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面積可解決多少萬人的住房問題?
(2)受物價上漲等因素的影響,已知這12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此類推,分析說明每平方米的年租金和時間能否構(gòu)成函數(shù),如果能,直接寫出函數(shù)解析式;
(3)在(2)的條件下,假設(shè)每年的公租房當(dāng)年全部出租完,寫出這12年中每年竣工投入使用的公租房的年租金W關(guān)于時間x的函數(shù)解析式,并求出W的最大值(單位:億元).如果在W取得最大值的這一年,老張租用了58m2的房子,計算老張這一年應(yīng)交付的租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王某月手機(jī)話費(fèi)中的各項費(fèi)用統(tǒng)計情況見下列圖表,請你根據(jù)圖表信息完成下列各題:
項目 | 月功能費(fèi) | 基本話費(fèi) | 長途話費(fèi) | 短信費(fèi) |
金額/元 | 5 | ▲ | ▲ | 25 |
(1)該月小王手機(jī)話費(fèi)共有多少元?
(2)扇形統(tǒng)計圖中,表示短信費(fèi)的扇形的圓心角為多少度?
(3)請將表格補(bǔ)充完整;
(4)請將條形統(tǒng)計圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機(jī)抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進(jìn)行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題研究小組對附著在物體表面的三個微生物(課題小組成員把他們分別標(biāo)號為1,2,3)的生長情況進(jìn)行觀察記錄.這三個微生物第一天各自一分為二,產(chǎn)生新的微生物(分別被標(biāo)號為4,5,6,7,8,9),接下去每天都按照這樣的規(guī)律變化,即每個微生物一分為二,形成新的微生物(課題組成員用如圖所示的圖形進(jìn)行形象的記錄).那么標(biāo)號為100的微生物會出現(xiàn)在( )
A.第3天B.第4天C.第5天D.第6天
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某加工廠以每噸3000元的價格購進(jìn)50噸原料進(jìn)行加工.若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需天,每噸售價4000元;若進(jìn)行精加工,每噸加工費(fèi)用為900元,需天,每噸售價4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.
(1)請完成表格并求出y與x的函數(shù)關(guān)系式(不要求寫自變量的范圍);
表一
粗加工數(shù)量/噸 | 3 | 7 | x |
精加工數(shù)量/噸 | 47 |
|
|
表二
粗加工數(shù)量/噸 | 3 | 7 | x |
粗加工獲利/元 |
| 2800 |
|
精加工獲利/元 |
| 25800 |
|
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某商場從一樓到二樓的自動扶梯,圖2是側(cè)面示意圖,MN是二樓樓頂,MN∥PQ,點C在MN上,且位于自動扶梯頂端B點的正上方,BC⊥MN.測得AB=10米,在自動扶梯底端A處測得點C的仰角為50°,點B的仰角為30°,求二樓的層高BC(結(jié)果保留根號)
(參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com