【題目】如圖,在平面直角坐標(biāo)系xOy中,△OA1B1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得△OA2B2;△OA2B2繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得△OA3B3;△OA3B3繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得△OA4B4;…;若點(diǎn)A1(1,0),B1(1,1),則點(diǎn)B4的坐標(biāo)是________,點(diǎn)B 2018的坐標(biāo)是________.
【答案】 點(diǎn)B4的坐標(biāo)是(1,﹣1), 點(diǎn)B2018的坐標(biāo)是(﹣1,1).
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合題目中的已知條件進(jìn)行分析計(jì)算得到點(diǎn)B2、B3、B4的坐標(biāo),并由此找到點(diǎn)Bn的坐標(biāo)在旋轉(zhuǎn)過(guò)程中的變化規(guī)律即可.
∵點(diǎn)A1、B1的坐標(biāo)分別為(1,0)、(1,1),
∴OA1=1,A1B1=1,
由旋轉(zhuǎn)的性質(zhì)可得:OA4=OA3=OA2=OA1=1,A4B4=A3B3=A2B2=A1B1=1,
∴B2的坐標(biāo)為(-1,1)、B3的坐標(biāo)為(-1,-1)、B4的坐標(biāo)為(1,-1),
∵,
∴點(diǎn)B2018與點(diǎn)B2重合,
∴點(diǎn)B2018的坐標(biāo)為(-1,1).
故答案為:(1)(1,-1);(2)(-1,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE,CE.
(1)如圖1,連接,過(guò)點(diǎn)作于點(diǎn),若,,四邊形的面積為.
①證明:;
②求線段的長(zhǎng).
(2)如圖2,若,,,求線段,的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為長(zhǎng)方形的對(duì)角線,將邊沿折疊,使點(diǎn)落在上的點(diǎn)處.將邊沿折疊,使點(diǎn)落在上的點(diǎn)處。
求證:四邊形是平行四邊形;
若,求四邊形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(重溫舊知)圓內(nèi)接四邊形的內(nèi)角具有特殊的性質(zhì).
如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,若AB=BD,∠ABD=50°,則∠BCD=_______°.
(提出問(wèn)題)圓內(nèi)接四邊形的邊會(huì)有特殊性質(zhì)嗎?
如圖②,某數(shù)學(xué)興趣小組進(jìn)行深入研究發(fā)現(xiàn):ABCD+BCDA=ACBD,請(qǐng)按他們的思路繼續(xù)完成證明.
證明:如圖③,作∠BAE=∠CAD,交BD于點(diǎn)E.
∵∠BAE=∠CAD,∠ABD=∠ACD,
∴△ABE∽△ACD,
∴ 即ABCD=ACBE
(應(yīng)用遷移)如圖,已知等邊△ABC外接圓⊙O,點(diǎn)P為上一點(diǎn),且PB=,PC=1,求PA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)1978年,以中共十一屆三中全會(huì)為標(biāo)志,中國(guó)開啟了改革開放歷史征程.40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國(guó)人民用雙手書寫了國(guó)家和民族發(fā)展的壯麗史詩(shī).下圖是1994—2017年三次產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率統(tǒng)計(jì)圖(三次產(chǎn)業(yè)是指:第一產(chǎn)業(yè)是指農(nóng)、林、牧、漁業(yè)(不含農(nóng)、林、牧、漁服務(wù)業(yè));第二產(chǎn)業(yè)是指采礦業(yè)(不含開采輔助活動(dòng)),制造業(yè)(不含金屬制品、機(jī)械和設(shè)備修理業(yè)),電力、熱力、燃?xì)饧八a(chǎn)和供應(yīng)業(yè),建筑業(yè);第三產(chǎn)業(yè)即服務(wù)業(yè),是指除第一產(chǎn)業(yè)、第二產(chǎn)業(yè)以外的其他行業(yè)).下列推斷不合理的是( )
A. 2014年,第二、三產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率幾乎持平;
B. 改革開放以來(lái),整體而言三次產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率都經(jīng)歷了先上升后下降的過(guò)程;
C. 第三產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率增長(zhǎng)速度最快的一年是2001年;
D. 2006年,第二產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率大約是第一產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率的10倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫出表示的點(diǎn),請(qǐng)依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計(jì)算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫長(zhǎng)為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長(zhǎng)畫Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長(zhǎng)即為.
請(qǐng)?jiān)谙旅娴臄?shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點(diǎn))在下面的數(shù)軸上畫出表示的點(diǎn)M,并描述第三步的畫圖步驟:_______________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,AB=6,點(diǎn)P是斜邊AB上一點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過(guò)點(diǎn)P作PQ⊥AB于P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變換而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量、計(jì)算,得到了x與y的幾組值,如下表:
x | …… | 0.8 | 1.0 | 1.4 | 2.0 | 3.0 | 4.0 | 4.5 | 4.8 | 5.0 | 5.5 | …… |
y | …… | 0.2 | 0.3 | 0.6 | 1.2 | 2.6 | 4.6 | 5.8 | 5.0 | m | 2.4 | …… |
經(jīng)測(cè)量、計(jì)算,m的值是 (保留一位小數(shù)).
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合幾何圖形和函數(shù)圖象直接寫出,當(dāng)QP=CQ時(shí),x的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四個(gè)2可以組成這樣的數(shù):
①2222,②2222,③,④,⑤2222,⑥2222
(1)其中最大的數(shù)是 ,(寫序號(hào))最小的數(shù)是 (寫序號(hào));
(2)用四個(gè)1組成一個(gè)數(shù),最大的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:把對(duì)角線互相垂直的四邊形叫做“對(duì)角線垂直四邊形”.
如圖,在四邊形中,,四邊形就是“對(duì)角線垂直四邊形”.
(1)下列四邊形,一定是“對(duì)角線垂直四邊形”的是_________.
①平行四邊形 ②矩形 ③菱形 ④正方形
(2)如圖,在“對(duì)角線垂直四邊形”中,點(diǎn)、、、分別是邊、、、的中點(diǎn),求證:四邊形是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com