【題目】如圖,ABC內(nèi)接于⊙OABAC,BD為⊙O的直徑,過點AAEBD于點E,延長BDAC延長線于點F

1)若AE4,AB5,求⊙O的半徑;

2)若BD2DF,求sinACB的值.

【答案】1;(2

【解析】

(1)連接OA,在RtABE中,利用勾股定理求得BE的長,設(shè)半徑為, RtOAE中,利用勾股定理構(gòu)建方程即可求解;

(2)連接CD,設(shè)OABC于點H,先證得OABC,推出OH//CD,設(shè)OH=,推出CD=,OA=AH=,利用勾股定理求得,,即可求解.

(1)連接OA,

AE=4AB=5,AEBD

,即,

BE=3

設(shè)⊙O半徑為,

RtOAE中,OA=OB=,OE=AE=4,

,即,

解得:,

∴⊙O半徑為;

(2)連接CD、OA,設(shè)OABC于點H

AB=AC

=,即點A的中點,

OA垂直平分BC,

OABC,

BD為直徑,

∴∠BCD=90,

∵∠BHO=BCD=90,BO=OD,

OH//CDCD =2OH,

設(shè)OH=,則CD=,

BD=2DF,

OD=DF

CD =OA,

OA=,

AH=

RtBOH中,OB=OA=,OH=,

,即,

RtBAH中,

,

AB=AC,

sinACB=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點的坐標(biāo)為,點的變換點的坐標(biāo)定義如下:

當(dāng)時,點的坐標(biāo)為;當(dāng)時,點的坐標(biāo)為

1)點的變換點的坐標(biāo)是   ;點的變換點為,連接,則   °;

2)已知拋物線軸交于點,(點在點的左側(cè)),頂點為.點在拋物線上,點的變換點為.若點恰好在拋物線的對稱軸上,且四邊形是菱形,求的值;

3)若點是函數(shù)圖象上的一點,點的變換點為,連接,以為直徑作,的半徑為,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)yax2+bx+ca≠0)的圖象于x軸的交點坐標(biāo)分別為(x1,0),(x2,0),且x1x2,圖象上有一點Mx0,y0)在x軸下方,對于以下說法:①b24ac0xx0是方程ax2+bx+cy0的解③x1x0x2ax0x1)(x0x2)<0其中正確的是( 。

A.①③④B.①②④C.①②③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.將繞點逆時針旋轉(zhuǎn)得到,則圖中陰影部分的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1是等邊三角形,點,分別在邊,上.若,則,,之間的數(shù)量關(guān)系是 ;

2)拓展探究

如圖2,是等腰三角形,,點分別在邊,上.若,則(1)中的結(jié)論是否仍然成立?請說明理由.

3)解決問題

如圖3,在中,,,點從點出發(fā),以img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/16/9b7a314d/SYS202005251646204964745826_ST/SYS202005251646204964745826_ST.021.png" width="47" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />的速度沿方向勻速運動,同時點從點出發(fā),以的速度沿方向勻速運動,當(dāng)其中一個點運動至終點時,另一個點隨之停止運動.連接,在右側(cè)作,該角的另一邊交射線于點,連接.設(shè)運動時間為,當(dāng)為等腰三角形時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2分別是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段的兩個端點均在小正方形的頂點上.

1)在圖1中畫出以為直角邊的直角,點在小正方形的頂點上,且;

2)在圖2中畫出以為腰的鈍角等腰,點在小正方形的頂點上,且的面積為10.并直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點A1,0),頂點坐標(biāo)(1n),與y軸的交點在(03),(04)之間(包含端點),則下列結(jié)論:abc0;3a+b0;③﹣a1a+bam2+bmm為任意實數(shù));一元二次方程 有兩個不相等的實數(shù)根,其中正確的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點與坐標(biāo)原點重合,頂點分別在坐標(biāo)軸的正半軸上, ,在直線,直線與折線有公共點.

1)點的坐標(biāo)是 ;

2)若直線經(jīng)過點,求直線的解析式;

3)對于一次函數(shù),當(dāng)的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ADBC,∠C=90°,CD=6cm.動點Q從點B出發(fā),以1cm/S的速度沿BC運動到點C停止,同時,動點P也從B點出發(fā),沿折線B→A→D運動到點D停止,且PQBC.設(shè)運動時間為ts),點P運動的路程為ycm),在直角坐標(biāo)系中畫出y關(guān)于t的函數(shù)圖象為折線段OEEF(如圖②).已知點M(45)在線段OE上,則圖①中AB的長是________cm

查看答案和解析>>

同步練習(xí)冊答案