【題目】已知,A市到B市的路程為260千米,甲車從A市前往B市運送物資,行駛2小時在M地汽車出現(xiàn)故障,立即通知技術人員乘乙車從A市趕來維修(通知時間忽略不計),乙車到達M地后又經(jīng)過20分鐘修好甲車后以原速原路返回A市,同時甲車以原來1.5倍的速度前往B市,如圖是兩車距A市的路程y(千米)與甲車所用時間x(小時)之間的函數(shù)圖象,下列四種說法:

①甲車提速后的速度是60千米/時;

②乙車的速度是96千米/時;

③乙車返回時yx的函數(shù)關系式為y=﹣96x+384;

④甲車到達B市乙車已返回A2小時10分鐘.

其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

①甲車提速后的速度:80÷2×1.5=60千米/時,故①正確;

②乙車的速度:80×2÷(2)=96千米/時,故②正確;

③點C的橫坐標為2++=,縱坐標為80,坐標為(80);

設乙車返回時yx的函數(shù)關系式y=kx+b,代入(,80)(4,0)得:

解得:,

所以yx的函數(shù)關系式y=96x+384(x4),故③正確;

(26080)÷6080÷96=3=(小時),即2小時10分鐘,故④正確;

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2x+ =0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關于x的二次函數(shù)y=x2+2x+ 的圖象向下平移9個單位,求平移后的圖象的表達式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點A,B(點A在點B左側(cè)),直線y=kx+b(k>0)過點B,且與拋物線的另一個交點為C,直線BC上方的拋物線與線段BC組成新的圖象,當此新圖象的最小值大于﹣5時,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為2的正方形ABCD中,點P、Q分別是邊AB、BC上的兩個動點(與點A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點E,AE交CD于點F,連結(jié)PQ.

(1)求證:△APQ≌△QCE;

(2)求∠QAE的度數(shù);

(3)設BQ=x,當x為何值時,QF∥CE,并求出此時△AQF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答
(1)先化簡再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點E(m,0)(0<m<4),過點E作x軸的垂線交直線AB于點N,交拋物線于點P,過點P作PM⊥AB于點M.

(1)求a的值和直線AB的函數(shù)表達式;
(2)設△PMN的周長為C1 , △AEN的周長為C2 , 若 = ,求m的值;
(3)如圖2,在(2)條件下,將線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接E′A、E′B,求E′A+ E′B的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).

(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈ ,cos22° ,tan22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCD的對角線BD上的一點,且BE=BC,AB=3,BC=4,點P為直線EC上的一點,且PQBC于點Q,PRBD于點R.

(1)①如圖1,當點P為線段EC中點時,易證:PR+PQ= (不需證明).②如圖2,當點P為線段EC上的任意一點(不與點E、點C重合)時,其它條件不變,則①中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

(2)如圖3,當點P為線段EC延長線上的任意一點時,其它條件不變,則PRPQ之間又具有怎樣的數(shù)量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形的一邊長是9cm,那么這個平行四邊形的兩條對角線的長可以是(

A. 4cm6cm B. 6cm8cm C. 8cm10cm D. 10cm12cm

查看答案和解析>>

同步練習冊答案