【題目】在四邊形中,,,,,是上一點(diǎn),是延長(zhǎng)線上一點(diǎn),且.
(1)在圖1中,求證:.
(2)在圖1中,若點(diǎn)在上且,試猜想、、之間的數(shù)量關(guān)系并證明.
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)知識(shí),完成下題:如圖2,在四邊形中,,,在上,,且,若,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)CE+BG=EG,證明見(jiàn)解析;(3)BE=(5+5).
【解析】
(1)根據(jù)已知推出,根據(jù)證明,即可得出結(jié)論;(2)連接,根據(jù)證,可得,根據(jù)可證,推出即可得出結(jié)論.(3)過(guò)C作交的延長(zhǎng)線于M,根據(jù)全等三角形的性質(zhì)得出,由(1)(2)可知,根據(jù)勾股定理求出,代入即可得出結(jié)論.
(1)證明:∵,,,
∴,
∵,
∴,
在和中,
,
∴,
∴;
(2)解:,
證明:連接,如圖,
在和中,
,
∴),
∴,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,
∵,
∴.
(3)解:過(guò)C作交的延長(zhǎng)線于M,如圖,
在△AMC和△ABC中,
,
∴,
∴,
由(1)(2)可知:,
∵,,,
∴,
由勾股定理得:,
∴,
∴,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC邊上一點(diǎn),△PAD的面積為 ,設(shè)AB=x,AD=y
(1)求y與x的函數(shù)關(guān)系式;
(2)若∠APD=45°,當(dāng)y=1時(shí),求PBPC的值;
(3)若∠APD=90°,求y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸的單位長(zhǎng)度為1.
(1)如果點(diǎn) A,D 表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?
(2)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個(gè)點(diǎn)中,哪一點(diǎn)表示的數(shù)的絕對(duì)值最大?為什么?
(3)當(dāng)點(diǎn)B為原點(diǎn)時(shí),若存在一點(diǎn)M到A的距離是點(diǎn)M到D的距離的2倍,則點(diǎn)M所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,點(diǎn)E在BC上,AE=BE,點(diǎn)F是CD的中點(diǎn),且AF⊥AB,若AD=2.7,AF=4,AB=6,則CE的長(zhǎng)為( 。
A. 2 B. 2-1 C. 2.5 D. 2.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)微信推出了搶紅包游戲,它有多種玩法,其中一種為“拼手氣紅包”,用戶設(shè)定好總金額以及紅包個(gè)數(shù)后,可以生成不等金額的紅包.現(xiàn)有一用戶發(fā)了三個(gè)“拼手氣紅包”,總金額為3元,隨機(jī)被甲、乙、丙三人搶到.
(1)判斷下列事件中,哪些是確定事件,哪些是不確定事件?
①丙搶到金額為1元的紅包;
②乙搶到金額為4元的紅包
③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多;
(2)記金額最多、居中、最少的紅包分別為A,B,C.
①求出甲搶到紅包A的概率;
②若甲沒(méi)搶到紅包A,則乙能搶到紅包A的概率又是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,點(diǎn)M、N分別在AB、BC上,將沿MN翻折,得,若,,則的度數(shù)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,E為AD上的一點(diǎn),連接EB并延長(zhǎng),使,連接EC并延長(zhǎng),使,連接為FG的中點(diǎn),連接DH.
求證:四邊形AFHD為平行四邊形;
若,,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com