【題目】二次函數y=ax2+bx+c(a,b,c為常數,且a≠0)中的x與y的部分對應值如下表給出了以下結論:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 | … |
①二次函數y=ax2+bx+c有最小值,最小值為﹣3;②當﹣<x<2時,y<0;③二次函數y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸的兩側;④當x<1時,y隨x的增大而減。畡t其中正確結論有( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】C
【解析】
利用x=﹣1和x=3時函數值都為0可判斷拋物線與x軸有兩個交點坐標為(﹣1,0),(3,0),則可對③進行判斷;利用表中數據得到當﹣1<x<3時,y<0,則可對②進行判斷;利用對稱性得到拋物線的對稱軸為直線x=1,則可對①進行判斷;根據二次函數的性質可對④進行判斷.
∵x=﹣1和x=3時,y=0,
∴拋物線與x軸有兩個交點坐標為(﹣1,0),(3,0),所以③正確;
∴當﹣1<x<3時,y<0,所以②錯誤;
∵點(﹣1,0)與(3,0)為拋物線上的對稱點,
∴拋物線的對稱軸為直線x=1,
∴當x=1時,二次函數有最小值﹣4,所以①錯誤;
∵拋物線開口向上,
∴當x<1時,y隨x的增大而減小,所以④正確.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時間是( )
A. 1小時 B. 2小時 C. 3小時 D. 4小時
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D是BC上一點,E是AC上一點,點G在BE上,聯結DG并延長交AE于點F,∠BGD=∠BAD=∠C.
(1)求證:;
(2)如果∠BAC=90°,求證:AG⊥BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角△ABC中,∠BAC=90°,D在BC上,連接AD,作BF⊥AD分別交AD于E,AC于F.
(1)如圖1,若BD=BA,求證:△ABE≌△DBE;
(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M,求證:①GM=2MC;②AG2=AFAC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知京潤生物制品廠生產某種產品的年產量不超過800噸,生產該產品每噸所需相關費為10萬元,且生產出的產品都能在當年銷售完.產品每噸售價y(萬元)與年產量x(噸)之間的函數關系如圖所示
(1)當該產品年產量為多少噸時,當年可獲得7500萬元毛利潤?(毛利潤=銷售額﹣相關費用)
(2)當該產品年產量為多少噸時,該廠能獲得當年銷售的是大毛利潤?最大毛利潤多少萬元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點B、C、D始終在一條直線上,已知托臂AC=20厘米,托臂BD=40厘米,支點C,D之間的距離是10厘米,張角∠CAB=60°.
(1)求支點D到滑軌MN的距離(精確到1厘米);
(2)將滑塊A向左側移動到A′,(在移動過程中,托臂長度不變,即AC=A′C′,BC=BC′)當張角∠C′A'B=45°時,求滑塊A向左側移動的距離(精確到1厘米).(備用數據:≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=ax2+bx+c(a>0)與x軸交于A(﹣1,0)、B兩點(點A在點B的左側),與y軸交于點C,拋物線的頂點為點D,對稱軸為直線x=1,交x軸于點E,tan∠BDE=.
(1)求拋物線的表達式;
(2)若點P是對稱軸上一點,且∠DCP=∠BDE,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在△ABC中,AB=4,BC=5,CA=6.
(1)如果DE=10,那么當EF=________,FD=________時,△DEF∽△ABC;
(2)如果DE=10,那么當EF=________,FD=________時,△FDE∽△ABC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com