【題目】小雨利用幾何畫(huà)板探究函數(shù)y=圖象,在他輸入一組a,b,c的值之后,得到了如圖所示的函數(shù)圖象,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),可以判斷,小雨輸入的參數(shù)值滿(mǎn)足( )
A.a>0,b>0,c=0B.a<0,b>0,c=0
C.a>0,b=0,c=0D.a<0,b=0,c>0
【答案】B
【解析】
從函數(shù)整體圖象來(lái)看,發(fā)現(xiàn)部分圖象有類(lèi)似反比例函數(shù),再?gòu)?/span>y軸右側(cè)圖象,判斷圖象虛線(xiàn)代表的意義,即可求解.
解:設(shè)虛線(xiàn)為x=m(顯然,m>0),易知兩條曲線(xiàn)
由圖中可知,當(dāng)x<m時(shí),y>0,|x-c|>0,
所以>0,
當(dāng)x>m時(shí),y<0,|x-c|>0,
所以<0,
可得(x-b)在m的左右兩側(cè)時(shí),符號(hào)是不同的,即b=m>0;
當(dāng)x<b時(shí),x-b<0,而y>0,
所以a<0顯然另外一條分割線(xiàn)為x=0=c.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:在中,邊上的動(dòng)點(diǎn)由向運(yùn)動(dòng)(與,不重合),點(diǎn)與點(diǎn)同時(shí)出發(fā),由點(diǎn)沿的延長(zhǎng)線(xiàn)方向運(yùn)動(dòng)(不與重合),連結(jié)交于點(diǎn),點(diǎn)是線(xiàn)段上一點(diǎn).
(1)初步嘗試:如圖,若是等邊三角形,,且點(diǎn),的運(yùn)動(dòng)速度相等,求證:.
小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問(wèn)題:
思路一:過(guò)點(diǎn)作,交于點(diǎn),先證,再證,從而證得結(jié)論成立;
思路二:過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)于點(diǎn),先證,再證,從而證得結(jié)論成立.
請(qǐng)你任選一種思路,完整地書(shū)寫(xiě)本小題的證明過(guò)程(如用兩種方法作答,則以第一種方法評(píng)分)
(2)類(lèi)比探究:如圖,若在中,,,且點(diǎn),的運(yùn)動(dòng)速度之比是,求的值;
(3)延伸拓展:如圖,若在中,,,記,且點(diǎn)、的運(yùn)動(dòng)速度相等,試用含的代數(shù)式表示(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A是y軸上一點(diǎn),其坐標(biāo)為(0,6),點(diǎn)B在x軸的正半軸上.點(diǎn)P,Q均在線(xiàn)段AB上,點(diǎn)P的橫坐標(biāo)為m,點(diǎn)Q的橫坐標(biāo)大于m,在△PQM中,若PM∥x軸,QM∥y軸,則稱(chēng)△PQM為點(diǎn)P,Q的“肩三角形.
(1)若點(diǎn)B坐標(biāo)為(4,0),且m=2,則點(diǎn)P,B的“肩三角形”的面積為 ;
(2)當(dāng)點(diǎn)P,Q的“肩三角形”是等腰三角形時(shí),求點(diǎn)B的坐標(biāo);
(3)在(2)的條件下,作過(guò)O,P,B三點(diǎn)的拋物線(xiàn)y=ax2+bx+c
①若M點(diǎn)必為拋物線(xiàn)上一點(diǎn),求點(diǎn)P,Q的“肩三角形”面積S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍.
②當(dāng)點(diǎn)P,Q的“肩三角形”面積為3,且拋物線(xiàn)y=ax2+bx+c與點(diǎn)P,Q的“肩三角形”恰有兩個(gè)交點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(x,y)經(jīng)過(guò)某種變換后到點(diǎn)(-y+1,x+2),我們把點(diǎn)(-y+1,x+2)叫做點(diǎn)P(x,y)的終結(jié)點(diǎn),已知點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,這樣依次得到、、、…若點(diǎn)的坐標(biāo)為(2,0),則點(diǎn)的坐標(biāo)為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了促進(jìn)旅游業(yè)的發(fā)展,某市新建一座景觀(guān)橋.橋的拱肋ADB可視為拋物線(xiàn)的一部分,橋面AB可視為水平線(xiàn)段,橋面與拱肋用垂直于橋面的桿狀景觀(guān)燈連接,拱肋的跨度AB為40米,橋拱的最大高度CD為16米(不考慮燈桿和拱肋的粗細(xì)),求與CD的距離為5米的景觀(guān)燈桿MN的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類(lèi)活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類(lèi)),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)九(1)班的學(xué)生人數(shù)為 ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃銷(xiāo)售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫(kù)存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?
(2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在直角中,,點(diǎn)在邊上,且如果將沿所在的直線(xiàn)翻折,點(diǎn)恰好落在邊上的點(diǎn)處,點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié),以圓心,為半徑作⊙,交線(xiàn)段于點(diǎn)和點(diǎn),作交⊙于點(diǎn),交線(xiàn)段于點(diǎn).
(1)求點(diǎn)到點(diǎn)和直線(xiàn)的距離
(2)如果點(diǎn)平分劣弧,求此時(shí)線(xiàn)段的長(zhǎng)度
(3)如果為等腰三角形,以為圓心的⊙與此時(shí)的⊙相切,求⊙的半徑
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com