(1)證明:∵∠AOM+∠BOM=90°,∠BON+∠BOM=90°,
∴∠AOM=∠BON,
∵四邊形ABCD和四邊形OEFG都是正方形,
∴AO=BO,∠OAM=∠OBN=45°,
在△AOM和△BON中,
,
∴△AOM≌△BON(ASA);
(2)解:∵△AOM≌△BON,
∴△AOM的面積=△BON的面積,
∴四邊形MONB的面積=
正方形ABCD的面積,
∵四邊形MONB的面積為1,
∴正方形ABCD的面積=4,
∴正方形ABCD的邊長為2;
(3)解:∵OH⊥BC,
∴OH=
×2=1,
又∵OE=2,
∴∠OEH=30°,
∴BH=OH=1,EH=
=
,
∴EB=EH-BH=
-1,
在Rt△EBM中,MB=EB•tan30°=(
-1)×
=1-
.
分析:(1)根據(jù)同角的余角相等求出∠AOM=∠BON,再根據(jù)正方形的性質(zhì)求出AO=BO,∠OAM=∠OBN=45°,然后利用“角邊角”證明△AOM和△BON全等即可;
(2)根據(jù)全等三角形的面積相等可得△AOM和△BON的面積相等,然后根據(jù)四邊形MONB的面積求出正方形ABCD的面積,再求出邊長;
(3)先根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出∠OEH=30°,然后求出BH、EH的長,再求出EB,然后解直角三角形即可得到MB的長.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),正方形得到性質(zhì),全等三角形的判定與性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),以及解直角三角形,綜合性較強(qiáng),難度中等,熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.