【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;
2)求圖象與x軸的交點A的坐標(biāo),與y軸交點B的坐標(biāo);
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當(dāng)y<0時,x的取值范圍.
【答案】(1)詳見解析;(2)A(﹣2,0)B(0,4);(3)4;(4)x<﹣2.
【解析】
試題分析:(1)求得一次函數(shù)y=2x+4與x軸、y軸的交點坐標(biāo),利用兩點確定一條直線就可以畫出函數(shù)圖象;(2)由(1)即可得結(jié)論;(3)通過交點坐標(biāo)根據(jù)三角形的面積公式即可求出面積;(4)觀察函數(shù)圖象與x軸的交點就可以得出結(jié)論.
試題解析:(1)當(dāng)x=0時y=4,當(dāng)y=0時,x=﹣2,則圖象如圖所示
(2)由上題可知A(﹣2,0)B(0,4),
(3)S△AOB=×2×4=4,
(4)x<﹣2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】其中考試后,班里有兩位同學(xué)各科平均成績相同,但是標(biāo)準(zhǔn)差不同,以下說法正確的是( )
A. 平均分數(shù)相等說明兩名同學(xué)各科學(xué)習(xí)成績一樣
B. 標(biāo)準(zhǔn)差較大的說明各科成績比較穩(wěn)定
C. 標(biāo)準(zhǔn)差較大的說明成績比較好
D. 標(biāo)準(zhǔn)差小的比標(biāo)準(zhǔn)差大的各科成績之間差異較小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意的正整數(shù)n , 能整除代數(shù)式(3n+1)(3n-1)-(3-n)(3+n)的整數(shù)是( )
A.3
B.6
C.10
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位急需用車,但不準(zhǔn)備買車,他們準(zhǔn)備和一個體車主或一國營出租車公司中的一家簽訂合同,設(shè)汽車每月行駛x km,應(yīng)付給個體車主的月租費是元,應(yīng)付給國營出租車公司的月租費是元, , 分別與之間的函數(shù)關(guān)系的圖象(兩條射線)如圖所示,觀察圖象,回答下列問題.
(1)分別寫出, 與之間的函數(shù)關(guān)系式;
(2)每月行駛的路程在什么范圍內(nèi)時,租國營公司的車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市用3000元購進某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9000元資金購進該種干果,但這次的進價比第一次的進價提高了20%,購進干果數(shù)量是第一次的2倍還多300千克,如果超市按每千克9元的價格出售,當(dāng)大部分干果售出后,余下的600千克按售價的8折售完.
(1)該種干果的第一次進價是每千克多少元?
(2)超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是一個非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點建立起對應(yīng)關(guān)系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。結(jié)合數(shù)軸與絕對值的知識回答下列問題:
(1)數(shù)軸上表示1和4的兩點之間的距離是______;表示-3和2的兩點之間的距離是______;
表示數(shù)a和-2的兩點之間的距離是3,那么a=________;一般地,數(shù)軸上表示數(shù)a和數(shù)b的兩點之間的距離等于__________.
(2)若數(shù)軸上表示數(shù)a的點位于-4與2之間,則=_______.
(3)是否存在數(shù)a,使代數(shù)式的值最。咳绻嬖,請寫出數(shù)a=______,此時代數(shù)式的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠C=70°,∠B=40°,求∠DAE的度數(shù)
(2)若∠C-∠B=30°,則∠DAE=________.
(3)若∠C-∠B=(∠C>∠B),求∠DAE的度數(shù)(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(a>0)與x軸相交于A,B兩點(點A在點B的左側(cè)),點P是拋物線上一點,且PB=AB,∠PBA=120°,如圖所示.
(1)求拋物線的解析式.
(2)設(shè)點M(m,n)為拋物線上的一個動點,且在曲線PA上移動.
①當(dāng)點M在曲線PB之間(含端點)移動時,是否存在點M使△APM的面積為?若存在,求點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M在曲線BA之間(含端點)移動時,求|m|+|n|的最大值及取得最大值時點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com