已知二次函數(shù)。
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;
(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請說明理由。
解:(1)因?yàn)椤?,
 所以不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn)。
(2) 設(shè)x1、x2的兩個(gè)根,
,
因?yàn)閮山稽c(diǎn)的距離是,
所以
即:,
變形為:
,
整理,得,
解得,,
又因?yàn)?IMG style="VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/c02/20101103/20101103164547609897.gif">,
所以,
所以:此二次函數(shù)的解析式為
(3)設(shè)點(diǎn)P的坐標(biāo)為,因?yàn)楹瘮?shù)圖象與x軸的兩個(gè)交點(diǎn)間的距離等于
所以:AB=,
所以,S△PAB=,
所以,
,則,
①當(dāng)時(shí),,即,
解得,=-2或3,
②當(dāng)時(shí),,即,
解得,=0或1,
綜上所述,所以存在這樣的P點(diǎn),P點(diǎn)坐標(biāo)是(-2,3),(3,3),((0, -3)或(1, -3)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過點(diǎn)A(1,2),B(3,2),C(0,-1),D(2,3).點(diǎn)P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時(shí),y1與y2的大小關(guān)系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,3),頂點(diǎn)坐標(biāo)為(1,4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于-1的實(shí)數(shù)根;⑤2a+b=0.其中,正確的說法有
②④⑤
②④⑤
.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),已知A點(diǎn)坐標(biāo)為(-1,0),且對稱軸為直線x=2,則B點(diǎn)坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊答案