【題目】已知關(guān)于x的一元二次方程x2+2x+(m﹣2)=0.
(1)當(dāng)m=1時(shí),判斷方程根的情況;
(2)當(dāng)m=﹣1時(shí),求方程的根.
【答案】(1)當(dāng)m=1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)x1=1,x2=﹣3.
【解析】
試題分析:(1)將m=1代入原方程,再根據(jù)判別式△=8>0,即可得出結(jié)論;
(2)將m=﹣1代入原方程,利用分解因式法解方程即可得出結(jié)論.
試題解析:(1)當(dāng)m=1時(shí),原方程為x2+2x﹣1=0,
∵△=22﹣4×1×(﹣1)=8>0,
∴當(dāng)m=1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)當(dāng)m=﹣1時(shí),原方程為x2+2x﹣3=(x﹣1)(x+3)=0,
∴x﹣1=0或x+3=0,
解得:x1=1,x2=﹣3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)三角形只有以下元素對應(yīng)相等,不能判定兩個(gè)三角形全等的( )
A. 兩角和一邊 B. 兩邊及夾角 C. 三個(gè)角 D. 三條邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明是個(gè)愛動腦筋的學(xué)生,在學(xué)習(xí)了解直角三角形以后,一天他去測量學(xué)校的旗桿DF的高度,此時(shí)過旗桿的頂點(diǎn)F的陽光剛好過身高DE為1.6米的小明的頭頂且在他身后形成的影長DC=2米.
(1)若旗桿的高度FG是a米,用含a的代數(shù)式表示DG.
(2)小明從點(diǎn)C后退6米在A的測得旗桿頂點(diǎn)F的仰角為30°,求旗桿FG的高度.(點(diǎn)A、C、D、G在一條直線上,,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式由左邊到右邊的變形,是因式分解的是( )
A. 3x(x+y)=3x2+3xy B. -2x2-2xy=-2x(x+y)
C. (x+5)(x-5)=x2-25 D. x2+x+1=x(x+1)+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中不正確的是( )
A.a(chǎn)c<0
B.b<0
C.b2﹣4ac<0
D.x=3關(guān)于x方程ax2+bx+c=0一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對稱軸是x=﹣且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)①直接寫出點(diǎn)B的坐標(biāo);②求拋物線解析式.
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com