【題目】某校為了解同學(xué)們課外閱讀名著的情況,在八年級隨機(jī)抽查了20名學(xué)生,調(diào)查結(jié)果如表所示:

課外名著閱讀量()

8

9

10

11

12

學(xué)生人數(shù)

3

3

4

6

4

關(guān)于這20名學(xué)生課外閱讀名著的情況,下列說法錯誤的是( )

A.中位數(shù)是10B.平均數(shù)是10.25C.眾數(shù)是11D.閱讀量不低于10本的同學(xué)點(diǎn)70%

【答案】A

【解析】

根據(jù)中位數(shù)、平均數(shù)、眾數(shù)的定義解答即可.

解:A、把這20名周學(xué)課外閱讀經(jīng)典名著的本書按從小到大的順序排列,則中位數(shù)是=10.5,故本選項錯誤;
B、平均數(shù)是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此選項不符合題意;
C、眾數(shù)是11,此選項不符合題意;
D、閱讀量不低于10本的同學(xué)所占百分比為×100%=70%,此選項不符合題意;
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:乙車的速度是120km/h;②m=160;③點(diǎn)H的坐標(biāo)是(7,80);④n=7.5.

其中說法正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c(a≠0)y軸交于點(diǎn)C,與x軸交于AB兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B(4,0),拋物線的對稱軸交x軸于點(diǎn)D,CEAB,并與拋物線的對稱軸交于點(diǎn)E現(xiàn)有下列結(jié)論:①b24a0;②b0;③5a+b0;④AD+CE4.其中正確結(jié)論個數(shù)為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,,角平分線交BCO,以OB為半徑作⊙O.(1)判定直線AC是否是⊙O的切線,并說明理由;

(2)連接AO交⊙O于點(diǎn)E,其延長線交⊙O于點(diǎn)D,,求的值;

(3)在(2)的條件下,設(shè)的半徑為3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù),當(dāng)時,函數(shù)有最大值5.

(1)求此二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn);

(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個交點(diǎn),從左到右,四個交點(diǎn)依次記為,當(dāng)以為直徑的圓與軸相切時,求的值.

(3)若點(diǎn)(2)中翻折得到的拋物線弧部分上任意一點(diǎn),若關(guān)于m的一元二次方程 恒有實數(shù)根時,求實數(shù)k的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片的一角作折疊,使頂點(diǎn)落在處,為折痕,將對折,使得落在直線上,得折痕,若恰好平分,則___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.

(1)求證:k取任何實數(shù)值,方程總有實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】慢車和快車先后從甲地出發(fā)沿直線道路勻速駛向乙地,快車比慢車晚出發(fā)0.5小時,行駛一段時間后,快車途中休息,休息后繼續(xù)按原速行駛,到達(dá)乙地后停止.慢車和快車離甲地的距離)(千米)與慢車行駛時間(小時)之間的函數(shù)關(guān)系如圖所示.

(1)求快車的速度;

(2)求快車到達(dá)乙地比慢車到達(dá)乙地早了多少小時?

(3)求線段對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,、在同一條直線上,連接.

1)請找出圖2中的全等三角形,并說明理由(說明:結(jié)論中不得含有圖中未標(biāo)識的字母);

2垂直嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案