【題目】閱讀下面材料,并解決問題:問 題:如圖1,等邊△ABC內(nèi)有一點P,若點P到頂點A,B,C的距離分別為6,8,10,求∠APB的度數(shù)?
分 析:由于PA,PB,PC不在同一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′和△ABP全等,這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到同一個三角形中從而求出∠APB的度數(shù).
(1)請你按上述方法求出圖1中∠APB的度數(shù);
(2)請你利用第(1)題的解答思想方法,解答下面問題:如圖2,已知△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點,且∠EAF=45°,求證:EF2=BE2+FC2 .
【答案】(1)150°;(2)證明見解析.
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)變換前后的兩個三角形全等,全等三角形對應(yīng)邊相等,全等三角形對應(yīng)角相等以及等邊三角形的判定和勾股定理逆定理解答;
(2)把△ABE繞點A逆時針旋轉(zhuǎn)90°得到△ACE′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,從而得到∠EAF=∠E′AF,然后利用“邊角邊”證明△EAF和△E′AF全等,根據(jù)全等三角形對應(yīng)邊相等可得E′F=EF,再利用勾股定理列式即可得證.
試題解析:解:(1)∵△ACP′≌△ABP, ∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,.
由題意知旋轉(zhuǎn)角∠PA P′=60°,∴△AP P′為等邊三角形,P P′=AP=3,∠A P′P=60°,易證△P P′C為直角三角形,且∠P P′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°
(2)把△ABE繞點A逆時針旋轉(zhuǎn)90°得到△ACE′,由旋轉(zhuǎn)的性質(zhì)得,AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,∵AE=AE′,∠EAF=∠E′AF,AF=AF,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2 ,即EF2=BE2+FC2 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示某市2016年6月份某一天的氣溫隨時間變化的情況,請觀察此圖回答下列問題:
(1)這天的最高氣溫是多少攝氏度?
(2)這天共有多少個小時的氣溫在31 ℃以上?
(3)這天什么時間范圍內(nèi)氣溫在上升?
(4)請你預(yù)測一下,次日凌晨1時的氣溫大約是多少攝氏度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y1=與正比例函數(shù)y2=k2x相交于點A(-1,-3)和點B.
(1)求k1,k2的值;
(2)寫出點B的坐標(biāo);
(3)寫出>k2x的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張陽從家里跑步去體育場,在那里鍛煉了一會兒后,又走到文具店去買筆,然后走回家,如圖是張陽離家的距離與時間的關(guān)系圖象.
根據(jù)圖象回答下列問題:
(1)體育場離張陽家多少千米?
(2)體育場離文具店多少千米?張陽在文具店逗留了多長時間?
(3)張陽從文具店到家的速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【課本引申】
我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關(guān)系呢?
【嘗試探究】
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
【拓展運用】
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,若∠1+∠2=230°,則剪掉的∠C=_________;
(3)小明聯(lián)想到了曾經(jīng)解決的一個問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請直接寫出答案_ .
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧掛上物體后會伸長,已知一彈簧的長度(cm)與所掛物體的重量(kg)之間的關(guān)系如下表:
所掛物體的重量(kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
彈簧的長度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 |
(1)當(dāng)所掛物體的重量為3kg時,彈簧的長度是_____________cm;
(2)如果所掛物體的重量為xkg,彈簧的長度為ycm,根據(jù)上表寫出y與x的關(guān)系式;
(3)當(dāng)所掛物體的重量為5.5kg時,請求出彈簧的長度。
(4)如果彈簧的最大伸長長度為20cm,則該彈簧最多能掛多重的物體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在BC 上,點E 在AC 上,AD交BE于F. 已知EG∥AD交BC于G, EH⊥BE交BC于H,∠HEG = 50°.
(1)求∠BFD的度數(shù).
(2)若∠BAD = ∠EBC,∠C = 41°,求∠BAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com