(2008•梅州)如圖所示,直線L與兩坐標(biāo)軸的交點坐標(biāo)分別是A(-3,0),B(0,4),O是坐標(biāo)系原點.
(1)求直線L所對應(yīng)的函數(shù)的表達(dá)式;
(2)若以O(shè)為圓心,半徑為R的圓與直線L相切,求R的值.

【答案】分析:(1)可把A,B兩點的坐標(biāo)代入,解方程組即可.
(2)相切那么O到L的距離等于半徑,那么求出O到AB的距離即可.
解答:解:(1)設(shè)所求為y=kx+b.(1分)
將A(-3,0),B(0,4)的坐標(biāo)代入,得
(2分)
解得b=4,k=.(3分)
所求為y=x+4.(4分)

(2)設(shè)切點為P,連OP,則OP⊥AB,OP=R.(5分)
Rt△AOB中,OA=3,OB=4,得AB=5,(6分)
因為,(7分)
∴R=.(8分)
點評:一次函數(shù)的解析式為y=kx+b.本題需注意的知識點為:直線與圓相切,圓心到直線的距離等于半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年云南省保山市隆陽區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標(biāo);
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標(biāo),只需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年云南省楚雄州雙柏縣中考數(shù)學(xué)模擬試卷2(教研室 郎紹波)(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標(biāo);
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標(biāo),只需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省梅州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標(biāo);
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標(biāo),只需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省梅州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,直線L與兩坐標(biāo)軸的交點坐標(biāo)分別是A(-3,0),B(0,4),O是坐標(biāo)系原點.
(1)求直線L所對應(yīng)的函數(shù)的表達(dá)式;
(2)若以O(shè)為圓心,半徑為R的圓與直線L相切,求R的值.

查看答案和解析>>

同步練習(xí)冊答案