已知:如圖,在平行四邊形ABCD中,E是AD的中點(diǎn),連接BE、CE,∠BEC=90°.
(1)求證:BE平分∠ABC;
(2)若EC=4,且數(shù)學(xué)公式,求四邊形ABCE的面積.

(1)證明:取BC的中點(diǎn)F,連接EF.
∵E、F分別是AD、BC的中點(diǎn),四邊形ABCD為平行四邊形,
∴AE∥BF,即四邊形ABFE為平行四邊形.
又∵∠BEC=90°,F(xiàn)為BC的中點(diǎn),
∴EF=BC=BF.
∴四邊形ABFE為菱形.
∴BE平分∠ABC.

(2)解:過(guò)點(diǎn)E作EH⊥BC,垂足為H.
∵四邊形ABFE為菱形,
∴AB=BF=
∴BE=AB,

又∵∠BEC=90°,
∴∠BCE=60度.
∵BC=2EC=8,EH=EC•sin60°=4×
∴S四邊形ABCE=(AE+BC)•EH=(8+4)×2
分析:(1)取BC的中點(diǎn)F,連接EF,要證明BE平分∠ABC,只需證明四邊形ABFE為菱形,因?yàn)锳E和BF既平行又相等,可先證平行四邊形,又因?yàn)橹苯侨切涡边吷系闹芯等于斜邊的一半,可證EF=FB,即四邊形ABFE為菱形,利用菱形的性質(zhì)可知對(duì)角線平分對(duì)角,從而得出結(jié)論;
(2)由圖象可知四邊形ABCE為梯形,所以要求面積,必須求出上下底和高,而上下底和高都可利用題中已知條件,借助于三角函數(shù)來(lái)求出.
點(diǎn)評(píng):此題考查了菱形的判定以及三角函數(shù)的應(yīng)用,考查比較全面,難易程度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABC0中,已知點(diǎn)A、C兩點(diǎn)的坐標(biāo)為A(
5
,
5
),C(2
5
,0).
(1)求點(diǎn)B的坐標(biāo).
(2)將平行四邊形ABCO向左平移
5
個(gè)單位長(zhǎng)度,求所得四邊形A′B′C′O′四個(gè)頂點(diǎn)的坐標(biāo).
(3)求平行四邊形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,點(diǎn)E在AC上,CE=BC,過(guò)E點(diǎn)作AC的垂線,交CD的延長(zhǎng)線于點(diǎn)F.求證:AB=FC.
(2)如圖2,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請(qǐng)直接寫(xiě)出點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.畫(huà)出圖形,直接寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫(xiě)出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南平模擬)如圖,已知四邊形ABCD.請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予證明.
關(guān)系:①AD∥BC;②AB=CD;③∠B+∠C=180°;④∠A=∠C.
已知:在四邊形ABCD中,
,
.(填序號(hào),寫(xiě)出一種情況即可)  
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形OABC中,已知點(diǎn)A、C兩點(diǎn)的坐標(biāo)為A (
3
,
3
),C(2
3
,0).
(1)填空:點(diǎn)B的坐標(biāo)是
(3
3
,
3
(3
3
3

(2)將平行四邊形OABC向左平移
3
個(gè)單位長(zhǎng)度,求所得四邊形A′B′C′O′四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸、y軸的交點(diǎn)分別為A、B,OB=3,,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H恰好落在直線AB上,折痕交x軸于點(diǎn)C,

(1)求過(guò)A、B、C三點(diǎn)的拋物線解析式;

(2)若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四

邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

(3)若點(diǎn)Q是拋物線上一個(gè)動(dòng)點(diǎn),使得以A、B、Q為頂點(diǎn)并且以AB為直角邊的直角三角形,直角寫(xiě)出Q點(diǎn)坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案