如圖,P是等邊△ABC內(nèi)一點(diǎn),且PA=6,PC=8,PB=10,若△APB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,得到△AP′C,則∠APC=
150
150
°.
分析:連接PP′,根據(jù)旋轉(zhuǎn)變換的性質(zhì)可得△AP′C和△APB全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得P′A=PA,P′C=PB,然后證明△APP′是等邊三角形,根據(jù)等邊三角形的每一個(gè)角都是60°可得∠APP′=60°,每一條邊都相等可得PP′=PA,再根據(jù)勾股定理逆定理證明△P′PC是直角三角形,然后根據(jù)∠APC=∠APP′+∠P′PC代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.
解答:解:如圖,連接PP′,
∵△APB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AP′C,
∴△AP′C≌△APB,
∴P′A=PA=6,P′C=PB=10,
∵旋轉(zhuǎn)角是60°,
∴△APP′是等邊三角形,
∴∠APP′=60°,PP′=PA=6,
∵PP′2+PC2=62+82=100,P′C2=PB2=102=100,
∴PP′2+PC2=P′C2,
∴△P′PC是以∠P′PC為直角的直角三角形,
∴∠APC=∠APP′+∠P′PC=60°+90°=150°.
故答案為:150.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),勾股定理逆定理的應(yīng)用,作輔助線構(gòu)造出等邊三角形與直角三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)E作BC的平行線,分別交AB、AC于點(diǎn)F、G,連接BE.
(1)若△ABC的面積是1,則△ADE的最小面積為
3
4
3
4

(2)求證:△AEB≌ADC;
(3)探究四邊形BCGE是怎樣特殊的四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫(xiě)出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,P為△ABC內(nèi)任意一點(diǎn),PE∥AB,PF∥AC.那么,△PEF是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點(diǎn),F(xiàn)為邊AB上一動(dòng)點(diǎn),AF=nBF,E為直線BC上一點(diǎn),且∠EDF=120°.
 
(1)如圖1,當(dāng)n=2時(shí),求
CE
CD
=
1
3
1
3
;
(2)如圖2,當(dāng)n=
1
3
時(shí),求證:CD=2CE;
(3)如圖3,過(guò)點(diǎn)D作DM⊥BC于M,當(dāng)
n=3
n=3
時(shí),C點(diǎn)為線段EM的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案