【題目】甲、乙兩車(chē)分別從、兩地同時(shí)出發(fā),甲車(chē)勻速前往地,到達(dá)地立即以另一速度按原路勻速返回到地;乙車(chē)勻速前往地,設(shè)甲、乙兩車(chē)距離地的距離為. 甲車(chē)行駛的時(shí)間為,之間的函數(shù)圖象如圖所示.

(1)甲車(chē)從地前往地的速度為_(kāi)______.

(2)求甲車(chē)返回時(shí)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.

(3)當(dāng)甲、乙兩車(chē)相距時(shí),直接寫(xiě)出甲車(chē)行駛的時(shí)間.

【答案】1120;(2,自變量取值范圍為:;(3小時(shí)(或),小時(shí)(或),小時(shí).

【解析】

1)甲車(chē)從地前往地的速度為 120

2)法一:

設(shè), ,代入

解得

自變量的取值范圍為:

法二:

設(shè),

代入,

解得

自變量取值范圍為:

3小時(shí)(或),小時(shí)(或),小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA,OBOC,OD是⊙O的半徑,

1)如果∠AOB=∠COD,那么_______,_____=______,∠AOC______BOD

2)如果ABCD,那么_____=_____,______;

3)如果=,那么____,_____,______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組借助無(wú)人飛機(jī)航拍校園.如圖,無(wú)人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°B處的仰角為30°.已知無(wú)人飛機(jī)的飛行速度為4/秒,求這架無(wú)人飛機(jī)的飛行高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)與拋物線(xiàn) 相交于和點(diǎn)兩點(diǎn).

⑴求拋物線(xiàn)的函數(shù)表達(dá)式;

⑵若點(diǎn)是位于直線(xiàn)上方拋物線(xiàn)上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);

⑶在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在定點(diǎn),使拋物線(xiàn)上任意一點(diǎn)到點(diǎn)的距離等于到直線(xiàn)的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)的運(yùn)動(dòng)服裝專(zhuān)柜,對(duì)兩種品牌的遠(yuǎn)動(dòng)服分兩次采購(gòu)試銷(xiāo)后,效益可觀(guān),計(jì)劃繼續(xù)采購(gòu)進(jìn)行銷(xiāo)售.已知這兩種服裝過(guò)去兩次的進(jìn)貨情況如下表.

第一次

第二次

品牌運(yùn)動(dòng)服裝數(shù)/件

20

30

品牌運(yùn)動(dòng)服裝數(shù)/件

30

40

累計(jì)采購(gòu)款/元

10200

14400

1)問(wèn)兩種品牌運(yùn)動(dòng)服的進(jìn)貨單價(jià)各是多少元?

2)由于品牌運(yùn)動(dòng)服的銷(xiāo)量明顯好于品牌,商家決定采購(gòu)品牌的件數(shù)比品牌件數(shù)的倍多5件,在采購(gòu)總價(jià)不超過(guò)21300元的情況下,最多能購(gòu)進(jìn)多少件品牌運(yùn)動(dòng)服?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1A2,A3,B1,B2,B3,分別在直線(xiàn)x軸上.OA1 B1,△B1 A2 B2,△B2 A3 B3,都是等腰直角三角形.如果點(diǎn)A1(1,1),那么點(diǎn)A2019的縱坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解某學(xué)校大班額現(xiàn)狀,某市決定通過(guò)新建學(xué)校來(lái)解決該問(wèn)題.經(jīng)測(cè)算,建設(shè)6個(gè)小學(xué),5個(gè)中學(xué),需費(fèi)用13800萬(wàn)元,建設(shè)10個(gè)小學(xué),7個(gè)中學(xué),需花費(fèi)20600萬(wàn)元.

1)求建設(shè)一個(gè)小學(xué),一個(gè)中學(xué)各需多少費(fèi)用.

2)該市共計(jì)劃建設(shè)中小學(xué)80所,其中小學(xué)的建設(shè)數(shù)量不超過(guò)中學(xué)建設(shè)數(shù)量的1.5倍.設(shè)建設(shè)小學(xué)的數(shù)量為x個(gè),建設(shè)中小學(xué)校的總費(fèi)用為y萬(wàn)元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②如何安排中小學(xué)的建設(shè)數(shù)量,才能使建設(shè)總費(fèi)用最低?

3)受?chē)?guó)家開(kāi)放二胎政策及外來(lái)務(wù)工子女就讀的影響,預(yù)計(jì)在小學(xué)就讀人數(shù)會(huì)有明顯增加,現(xiàn)決定在(2)中所定的方案上增加投資以擴(kuò)大小學(xué)的就讀規(guī)模,若建設(shè)小學(xué)總費(fèi)用不超過(guò)建設(shè)中學(xué)的總費(fèi)用,則每所小學(xué)最多可增加多少費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件獲利減少2元.設(shè)每天安排x人生產(chǎn)乙產(chǎn)品.

(1)根據(jù)信息填表

產(chǎn)品種類(lèi)

每天工人數(shù)(人)

每天產(chǎn)量(件)

每件產(chǎn)品可獲利潤(rùn)(元)

15

(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多550元,求每件乙產(chǎn)品可獲得的利潤(rùn).

(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤(rùn)W(元)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張長(zhǎng)為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在矩形的邊上).則剪下的等腰三角形的面積為______cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案