(2011•成都)已知:如圖,以矩形ABCD的對(duì)角線AC的中點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,⊙O經(jīng)過(guò)B、D兩點(diǎn),過(guò)點(diǎn)B作BK⊥AC,垂足為K.過(guò)D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長(zhǎng)線相交于點(diǎn)E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD=(a為大于零的常數(shù)),求BK的長(zhǎng):
(3)若F是EG的中點(diǎn),且DE=6,求⊙O的半徑和GH的長(zhǎng).
(1)證明:∵四邊形據(jù)ABCD是矩形,
∴AD=BC,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK;
(2)∵AB=a,AD==BC,
∴AC===
∵BK⊥AC,
∴△BKC∽△ABC,
∴=,
∴=,
∴BK=a,
∴BK=a.
(3)連接OF,
∵ABCD為矩形,
∴=,
∴EF=ED=×6=3,
∵F是EG的中點(diǎn),
∴GF=EF=3,
∵△AFD≌△HBF,
∴HF=FE=3+6=9,
∴GH=6,
∵DH∥KB,ABCD為矩形,
∴AE2=EF•ED=3×6=18,
∴AE=3,
∵△AED∽△HEC,
∴==,
∴AE=AC,
∴AC=9,
則AO=.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A.相交 | B.相切 |
C.相離 | D.無(wú)法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A.m>0 | B.n<0 |
C.mn<0 | D.m﹣n>0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A.n2﹣4mk<0 | B.n2﹣4mk=0 |
C.n2﹣4mk>0 | D.n2﹣4mk≥0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com