精英家教網(wǎng)已知:如圖,⊙O的直徑AD=2,
BC
=
CD
=
DE
,∠BAE=90度.
(1)求△CAD的面積;
(2)如果在這個(gè)圓形區(qū)域中,隨機(jī)確定一個(gè)點(diǎn)P,那么點(diǎn)P落在四邊形ABCD區(qū)域的概率是多少?
分析:(1)由直徑對(duì)的圓周角是90°,得∠ACD=∠BAE=90°,由
BC
=
CD
=
DE
得∠BAC=∠CAD=∠DAE,
所以∠BAC=∠CAD=∠DAE=30°,在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=
3
,即S△ACD=
1
2
AC×CD=
3
2

(2)連BD,作BF⊥AC,垂足為F,求得四邊形ABCD的面積和圓的面積的比,根據(jù)概率的意義求得P點(diǎn)落在四邊形ABCD區(qū)域的概率.
解答:精英家教網(wǎng)解:(1)∵AD為⊙O的直徑,
∴∠ACD=∠BAE=90°.
BC
=
CD
=
DE
,
∴∠BAC=∠CAD=∠DAE.
∴∠BAC=∠CAD=∠DAE=30°.
∵在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=
3

∴S△ACD=
1
2
AC×CD=
3
2


(2)解法1:連BD,
∵∠ABD=90°,∠BAD=60°,
∴∠BDA=∠BCA=30°,
∴BA=BC.
作BF⊥AC,垂足為F,
∴AF=
1
2
AC=
3
2
,
∴BF=AFtan30°=
1
2

∴S△ABC=
1
2
AC×BF=
3
4
,
∴SABCD=
3
3
4

∵S⊙O=π,
∴P點(diǎn)落在四邊形ABCD區(qū)域的概率=
3
3
4
π
=
3
3


(2)解法2:作CM⊥AD,垂足為M.
∵∠BCA=∠CAD(證明過(guò)程見(jiàn)解法1),
∴BC∥AD.
∴四邊形ABCD為等腰梯形.
∵CM=ACsin30°=
3
2
,
∴SABCD=
1
2
(BC+AD)CM=
3
3
4

∵S⊙O=π,
∴P點(diǎn)落在四邊形ABCD區(qū)域的概率=
3
3
4
π
=
3
3
點(diǎn)評(píng):本題利用了在圓中弧與弦的關(guān)系和直角三角形的性質(zhì)、銳角三角函數(shù)的概念及概率的概念求解.用到的知識(shí)點(diǎn)為:等弧所對(duì)的圓周角相等;概率=相應(yīng)的面積與總面積之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,從地面上的點(diǎn)P測(cè)得大樓的某扇窗戶(hù)A的仰角為37°,再?gòu)狞c(diǎn)P測(cè)得該大樓窗戶(hù)A正上方的另一扇精英家教網(wǎng)窗戶(hù)B,這時(shí)PA平分∠BPC.若點(diǎn)P到大樓的水平距離PC為10米.
(1)求∠BPC的度數(shù);
(2)試求窗戶(hù)B到地面的豎直高度BC(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線(xiàn)段AB中垂線(xiàn)上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線(xiàn)l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線(xiàn)l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線(xiàn)x=1交直線(xiàn)l1于點(diǎn)E,交直線(xiàn)l2于點(diǎn)D,平行于y軸的直x=a交直線(xiàn)l1于點(diǎn)M,交直線(xiàn)l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線(xiàn)段AB中垂線(xiàn)上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省南通市通州區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線(xiàn)段AB中垂線(xiàn)上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案