【題目】如圖,,,,點(diǎn)D、E為BC邊上的兩點(diǎn),且,連接EF、BF則下列結(jié)論:≌;≌;;,其中正確的有()個(gè).
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
根據(jù)∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS證明△AED≌△AEF,判定①正確;
由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS證明≌,判定②正確;
先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS證明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根據(jù)三角形兩邊之和大于第三邊可得BE+BF>EF,等量代換后判定③正確;
先由△ACD≌△ABF,得出∠C=∠ABF=45°,進(jìn)而得出∠EBF=90°,判定④正確.
解:①∵∠DAF=90°,∠DAE=45°,
∴∠FAE=∠DAF-∠DAE=45°.
在△AED與△AEF中,
,
∴△AED≌△AEF(SAS),①正確;
②∵△AED≌△AEF,
∴AF=AD,
∵,
∴∠FAB=∠CAD,
∵AB=AC,
∴≌,②正確;
③∵∠BAC=∠DAF=90°,
∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.
在△ACD與△ABF中,
,
∴△ACD≌△ABF(SAS),
∴CD=BF,
由①知△AED≌△AEF,
∴DE=EF.
在△BEF中,∵BE+BF>EF,
∴BE+DC>DE,③正確;
④由③知△ACD≌△ABF,
∴∠C=∠ABF=45°,
∵∠ABE=45°,
∴∠EBF=∠ABE+∠ABF=90°.④正確.
故答案為D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到Rt△ADE的位置,點(diǎn)E在斜邊AB上,連結(jié)BD,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)如圖1,若點(diǎn)F與點(diǎn)A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,
①如圖2,當(dāng)點(diǎn)F在線段CA的延長線上時(shí),判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)點(diǎn)F在線段CA上時(shí),設(shè)BE=x,請用含x的代數(shù)式表示線段AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一副直角三角板的頂點(diǎn)疊合在一起,記為點(diǎn)O(∠C=30°,∠A=45°).
(1)當(dāng)∠AOC=45°時(shí),求∠DOB的度數(shù);
(2)請?zhí)骄俊?/span>AOC和∠DOB之間滿足的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=_______度;
(2)如圖2如果∠BAC=60°,則∠BCE=______度;
(3)設(shè)∠BAC=,∠BCE=.
①如圖3,當(dāng)點(diǎn)D在線段BC上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),請直接寫出之樣的數(shù)量關(guān)系,不用證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村計(jì)劃對總長為1800m的道路進(jìn)行改造,安排甲、乙兩個(gè)工程隊(duì)完成已知甲隊(duì)每天能完成的道路長度是乙隊(duì)每天能完成的2倍,并且在獨(dú)立完成長為400m的道路時(shí),甲隊(duì)比乙隊(duì)少用4天.
求甲、乙兩工程隊(duì)每天能完成道路的長度分別是多少m?
若村委每天需付給甲隊(duì)的道路改造費(fèi)用為萬元,乙隊(duì)為萬元,要使這次的道路改造費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)C在直線AB上,AC=8cm,BC=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn),求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算或解方程
(1)﹣14+(﹣5)2×(﹣)+|0.8﹣1|
(2)﹣1.53×0.75+1.53×+×1.53
(3)
(4).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com