【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡 旁一棵樹 的高度,他們先在點 處測得樹頂 的仰角為 ,然后在坡頂 測得樹頂 的仰角為 ,已知斜坡 的長度為 , 的長為 ,則樹 的高度是( )

A.
B.30
C.
D.40

【答案】B
【解析】解:在Rt△DEC中,
∵CD=20,DE=10.
∴ ∠DCE=30°,∠CDE=60°.
∴ ∠CDF=30°.
又∵∠BDF=30°.∠BCA=60°.
∴ ∠BCD=30°.∠BDC=60°.
在Rt△BCD中,
∴ tan60°=.
∴ BC=DCtan60°=20.
在Rt△BAC中,
∴ sin60°=.
∴ BA=BCsin60°=20×=30(m).
故AB的高度為30m.
【考點精析】本題主要考查了解直角三角形的相關(guān)知識點,需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形紙牌中,AB=8cm,BC=6cm,AC=5cm,沿著過△ABC的頂點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,則△AED周長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連接BF,CE,下列說法中正確的個數(shù)是( 。

①CE=BF;②△ABD和ADC的面積相等;③BF∥CE;④CE,BF均與AD垂直

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:四條邊對應(yīng)相等,四個角對應(yīng)相等的兩個四邊形全等.某學(xué)習(xí)小組在研究后發(fā)現(xiàn)判定兩個四邊形全等需要五組對應(yīng)條件,于是把五組條件進行分類研究,并且針對二條邊和三個角對應(yīng)相等類型進行研究提出以下幾種可能:

① AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;

② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;

③ AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;

④ AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1

其中能判定四邊形ABCD和四邊形A1B1C1D1全等有( )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2km到達A村,繼續(xù)向南騎行3km到達B村,然后向北騎行9kmC村,最后回到郵局.

(1)以郵局為原點,以向北方向為正方向,用1cm表示1km,畫出數(shù)軸,并在該數(shù)軸上表示出A、B、C三個村莊的位置;

(2)C村離A村有多遠?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩條直線都與第三條直線相交,∠1和∠2是內(nèi)錯角,∠3和∠2是鄰補角.

(1)根據(jù)上述條件,畫出符合題意的圖形;

(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線的交點,過點O作OE⊥OF,分別交AD,CD于E,F(xiàn),若AE=6,CF=4,則EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2),點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l,交拋物線于點Q.

(1)求拋物線的解析式;
(2)求直線BD的解析式;
(3)當(dāng)點P在線段OB上運動時,直線l交BD于點M,是否存在點P,使得四邊形CQMD是平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案