【題目】已知⊙O的半徑為2,AB是⊙O的弦,點P在⊙O上,AB=2.若點P到直線AB的距離為1,則∠PAB的度數為_____.
【答案】15°或30°或105°
【解析】
如圖作OP1⊥AB交⊙O于P1交AB于H,過點O作直線P2P3∥AB交⊙O于P2,P3.首先證明P1,P2,P2是滿足條件的點,分別求解即可解決問題.
如圖作OP1⊥AB交⊙O于P1交AB于H,過點O作直線P2P3∥AB交⊙O于P2,P3.
∵OA=OB,OH⊥AB,AB=2,OA=2,
∴AH=BH=,
∴OH==1,
∴HP1=1,
∴直線AB與直線P2P3之間的結論距離為1,
∴P1,P2,P3是滿足條件的點.
∵OA=2OH,
∴∠OAH=30°,可得∠BOP1=60°,
∠BOP3=∠AOP2=30°,∠OAP2=∠OP2A=75°,
∴∠P1AB=∠BOP1=30°,∠P3AB=∠BOP3=15°,
∠P2AB=180°﹣75°=105°.
故答案為:15°或30°或105°.
科目:初中數學 來源: 題型:
【題目】下列說法中正確的是( ).
A. “打開電視機,正在播放《動物世界》”是必然事件
B. 某種彩票的中獎概率為,說明每買1000張,一定有一張中獎
C. 拋擲一枚質地均勻的硬幣一次,出現正面朝上的概率為
D. 想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調查
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8,BC=6,矩形在直線l上繞其右下角的頂點B向右旋轉90°至圖①位置,再繞右下角的頂點繼續(xù)旋轉90°至圖②位置,依此類推,這樣連續(xù)旋轉99次后頂點A在整個旋轉過程中所經過的路程之和是( )
A.288πB.294πC.300πD.396π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中錯誤的是【 】
A.某種彩票的中獎率為1%,買100張彩票一定有1張中獎
B.從裝有10個紅球的袋子中,摸出1個白球是不可能事件
C.為了解一批日光燈的使用壽命,可采用抽樣調查的方式
D.擲一枚普通的正六面體骰子,出現向上一面點數是2的概率是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線的頂點坐標為 ,伴隨直線為 ,拋物線與其伴隨直線的交點坐標為 和 ;
(2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點A,B(點A在點B的左側),與x軸交于點C,D.
①若∠CAB=90°,求m的值;
②如果點P(x,y)是直線BC上方拋物線上的一個動點,△PBC的面積記為S,當S取得最大值時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,點P是正方形ABCD內的一點,把△ABP繞點B順時針方向旋轉,使點A與點C重合,點P的對應點是Q.若PA=3,PB=2,PC=5,求∠BQC的度數.
(2)點P是等邊三角形ABC內的一點,若PA=12,PB=5,PC=13,求∠BPA的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD內接于⊙O,AB=AC,過點A作AE∥BD交CD的延長線于點E.
(1)求證:AE=DE;
(2)若∠BCD﹣∠CBD=60°,求∠ABD的度數;
(3)在(2)的條件下,若BD=21,CD=9,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】市面上販售的防曬產品標有防曬指數,而其對抗紫外線的防護率算法為:防護率,其中.
請回答下列問題:
(1)廠商宣稱開發(fā)出防護率的產品,請問該產品的應標示為多少?
(2)某防曬產品文宣內容如圖所示.
請根據與防護率的轉換公式,判斷此文宣內容是否合理,并詳細解釋或完整寫出你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com