【題目】如圖,一次函數y=kx+b與反比例函數y=的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數與反比例函數的解析式;
(2)過點B作BC⊥x軸,垂足為C,連接AC,求△ABC的面積.
【答案】(1)反比例函數的解析式為y=,一次函數的解析式為y=x+1.(2)5.
【解析】
(1)把A的坐標代入反比例函數的解析式,求出其解析式,把B的坐標代入反比例函數的解析式,求出B的坐標,把A、B的坐標代入一次函數的解析式,得出方程組,求出方程組的解即可;
(2)求出BC=|﹣2|=2,BC邊上的高是|﹣3|+2,代入三角形的面積公式求出即可.
解:(1)∵點A(2,3)在y=的圖象上,
∴m=6,
∴反比例函數的解析式為y=,
∴n==﹣2,
∵點A(2,3),B(﹣3,﹣2)在y=kx+b的圖象上,
∴
∴
∴一次函數的解析式為y=x+1.
(2)以BC為底,則BC邊上的高為3+2=5,
S△ABC=×2×5=5,
答:△ABC的面積是5.
科目:初中數學 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結果精確到0.1m).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個,小明將球攪勻后從中摸出一個球是紅球的概率是0.25.
(1)求口袋中紅球的個數;
(2)若小明第一次從中摸出一個球,放回攪勻后再摸出一個球,請通過樹狀圖或者列表的方法求出小明兩次均摸出紅球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】主題班會課上,王老師出示了如圖一幅漫畫,經過同學們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟,根據同學們的選擇情況,小明繪制了如圖兩幅不完整的圖表,請根據圖表中提供的信息,解答下列問題:
觀點 | 頻數 | 頻率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)參加本次討論的學生共有 人;
(2)表中a= ,b= ;
(3)將條形統(tǒng)計圖補充完整;
(4)現(xiàn)準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當A1B1與半圓O相切于點D時,平移的距離的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)所示,等邊△ABC中,線段AD為其內角角平分線,過D點的直線B1C1⊥AC于點C1交AB的延長線于點B1.
(1)請你探究:=,=是否都成立?
(2)請你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內角角平分線,請問=一定成立嗎?并證明你的判斷.
(3)如圖(2)所示Rt△ABC中,∠ACB=90°,AC=8,AB=,E為AB上一點且AE=5,CE交其內角角平分線AD于F.試求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=ax﹣1的圖象與反比例函數y=的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=.
(1)求a,k的值及點B的坐標;
(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;
(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現(xiàn)有7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內,未被覆蓋的部分(兩個矩形)用陰影表示.設左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( 。
A. a=2bB. a=3bC. a=3.5bD. a=4b
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com