【題目】如圖,將矩形OABC置于平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點C在x軸上,點D(,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標(biāo)平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
試題分析:如圖,
過點E作EF⊥AB于F,EF分別與AD、OC交于點G、H,
過點D作DP⊥EF于點P,
則EP=PH+EH=DC+EH=1+EH,
在Rt△PDE中,由勾股定理可得,
DP2=DE2﹣PE2=9+(1+EH)2,
∴BF2=DP2=9+(1+EH)2,
在Rt△AEF中,AF=AB﹣BF=,EF=4+EH,AE=4,
∵AF2+EF2=AE2,
即:
解得EH=1,
∴AB=3,AF=2,E(2,﹣1).
∵∠AFG=∠ABD=90°,∠FAG=∠BAD,
∴△AFG∽△ABD.
∴,
即:,
∴FG=2.
∴EG=EF﹣FG=3.
∴點G的縱坐標(biāo)為2.
∵y=ax2﹣4ax+10=a(x﹣2)2+(10﹣20a),
∴此拋物線y=ax2﹣4ax+10的頂點必在直線x=2上.
又∵拋物線的頂點落在△ADE的內(nèi)部,
∴此拋物線的頂點必在EG上.
∴﹣1<10﹣20a<2,
∴.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口P位于東西方向的海岸線上,“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16nmile,“海天”號每小時航行12nmile,它們離開港口一個半小時后相距30nmile,且知道“遠航”號沿東北方向航行,那么“海天”號航行的方向是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三角形的兩個內(nèi)角的和是85°,那么這個三角形是( )
A. 鈍角三角形 B. 直角三角形 C. 銳角三角形 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果某三角形的兩邊長分別為5和7,第三邊的長為偶數(shù),那么這個三角形的周長可以是( )
A. 14 B. 17 C. 22 D. 26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,BC=9厘米,點D為AB的中點.如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,1秒鐘時,△BPD與△CQP是否全等,請說明;
(2)點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橋梁上的拉桿,電視塔的底座,都是三角形結(jié)構(gòu),而活動掛架是四邊形結(jié)構(gòu),這是分別利用三角形和四邊形的________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,P是∠ABC內(nèi)一點,請過點P畫射線PD,使PD∥BC;過點P畫直線PE∥BA,交BC于點E.請畫圖并通過觀察思考后你發(fā)現(xiàn)∠ABC與∠DPE的大小關(guān)系是 ,并說明理由.
(2)如圖2,直線a,b所成的角跑到畫板外面去了,為了測量這兩條直線所成的角的度數(shù),請畫圖并簡單地寫出你的方法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com