【題目】如圖,正方形ABCO的邊OAOC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度αα90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG

1)求證:CBG≌△CDG;

2)求∠HCG的度數(shù);并判斷線段HGOH、BG之間的數(shù)量關系,說明理由;

3)連結BD、DA、AEEB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

【答案】(1)證明見解析;(245°HG= HO+BG;(3)(2,0).

【解析】試題分析:(1)求證全等,觀察兩個三角形,發(fā)現(xiàn)都有直角,而CG為公共邊,進而再鎖定一條直角邊相等即可,因為其為正方形旋轉得到,所以邊都相等,即結論可證.

2)上問的結論,本題一般都要使用才能求出結果.所以由三角形全等可以得到對應邊、角相等,即BG=DG,DCG=BCG.同第一問的思路你也容易發(fā)現(xiàn)CDH≌△COH,也有對應邊、角相等,即OH=DH,OCH=DCH.于是GCH四角的和,四角恰好組成直角,所以GCH=90°,且容易得到OH+BG=HG

3)四邊形AEBD若為矩形,則需先為平行四邊形,即要對角線互相平分,合適的點只有GAB中點的時候.由上幾問知DG=BG,所以此時同時滿足DG=AG=EG=BG,即四邊形AEBD為矩形.求H點的坐標,可以設其為(x,0),則OH=x,AH=6-x.而BGAB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三邊都可以用含x的表達式表達,那么根據(jù)勾股定理可列方程,進而求出x,推得H坐標.

試題解析:(1正方形ABCO繞點C旋轉得到正方形CDEF

∴CD=CB,∠CDG=∠CBG=90°

Rt△CDGRt△CBG

∴△CDG≌△CBGHL),

2∵△CDG≌△CBG

∴∠DCG=∠BCG,DG=BG

Rt△CHORt△CHD

∴△CHO≌△CHDHL

∴∠OCH=∠DCH,OH=DH

HG=HD+DG=HO+BG

3)四邊形AEBD可為矩形

如圖,

連接BD、DAAE、EB

因為四邊形AEBD若為矩形,則需先為平行四邊形,即要對角線互相平分,合適的點只有GAB中點的時候.

因為DG=BG,所以此時同時滿足DG=AG=EG=BG,即平行四邊形AEBD對角線相等,則其為矩形.

所以當G點為AB中點時,四邊形AEBD為矩形.

四邊形DAEB為矩形

∴AG=EG=BG=DG

∵AB=6

∴AG=BG=3

H點的坐標為(x,0

HO=x

∵OH=DH,BG=DG

∴HD=x,DG=3

Rt△HGA

∵HG=x+3,GA=3HA=6-x

x+32=32+6-x2

∴x=2

∴H點的坐標為(2,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是等腰梯形,ADBC,AB=DC,BC在x軸上,點A在y軸的正半軸上,點A,D的坐標分別為A(0,2),D(2,2),AB=2,連接AC.

(1)求出直線AC的函數(shù)解析式;

(2)求過點A,C,D的拋物線的函數(shù)解析式;

(3)在拋物線上有一點P(m,n)(n<0),過點P作PM垂直于x軸,垂足為M,連接PC,使以點C,P,M為頂點的三角形與RtAOC相似,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O是對角線AC上一點,以OC為半徑的O與CD交于點M,且BAC=DAM

(1)求證:AM與O相切;

(2)若AM=3DM,BC=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七(2)數(shù)學測驗成績如下:77,74,65,53,95,87,84,63,91,53,69,81,61,69,91,78,75,81,80,67,76,81,61,69,79,94,86,70,70,87,81,86,90,88,85,67,71,82,87,75,落在79.5~89.5內數(shù)據(jù)的頻數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=2x2向上平移2個單位,再向右平移3個單位,所得拋物線的解析式為( )
A.y=2(x﹣3)2+2
B.y=2(x+3)2+2
C.y=2(x+3)2﹣2
D.y=2(x﹣3)2﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.

(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數(shù);

(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉至如圖③,當∠CON=5∠DOM時,MN與CD相交于點E,請你判斷MN與BC的位置關系,并求∠CEN的度數(shù)

(3)將圖①中的三角板OMN繞點O按每秒5°的速度按逆時針方向旋轉一周,在旋轉的過程中,三角板MON運動幾秒后直線MN恰好與直線CD平行.

(4)將如圖①位置的兩塊三角板同時繞點O逆時針旋轉,速度分別每秒20°和每秒10°,當其中一個三角板回到初始位置時,兩塊三角板同時停止轉動.經(jīng)過 9 秒后邊OC與邊ON互相垂直.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OEAB于O,若BOD=40°,則不正確的結論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設四邊形的內角和等于a,六邊形的外角和等于b,則ab的關系是( 。

A. a>b B. a<b C. a=b D. b=a+360°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知代數(shù)式3x2﹣6x的值為9,則代數(shù)式x2﹣2x+8的值為__

查看答案和解析>>

同步練習冊答案