【題目】定義:對于實(shí)數(shù)a,符號[a]表示不大于a的最大整數(shù).例如:[5.7]=5,[5]=5,[﹣π]=﹣4.如果[a]=﹣3,則a的取值范圍為( )
A.﹣4<a≤﹣3
B.﹣4≤a<﹣3
C.﹣3<a≤﹣2
D.﹣3≤a<﹣2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點(diǎn),交邊AC于E點(diǎn),若△ABC與△EBC的周長分別是40cm,24cm,則AB=________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在8×8的網(wǎng)格中,我們把△ABC在圖1中作軸對稱變換,在圖2中作旋轉(zhuǎn)變換,已知網(wǎng)格中的線段ED、線段MN分別是邊AB經(jīng)兩種不同變換后所得的像,請?jiān)趦蓤D中分別畫出△ABC經(jīng)各自變換后的像,并標(biāo)出對稱軸和旋轉(zhuǎn)中心(要求:不寫作法,作圖工具不限,但要保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一元二次方程4x2+5x=81化為一般形式后,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)分別為( )
A.4,5,81
B.4,5,﹣81
C.4,5,0
D.4x2 , 5x,﹣81
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請你做評委:在一堂數(shù)學(xué)活動(dòng)課上,同在一合作學(xué)習(xí)小組的小明、小亮、小丁、小彭對剛學(xué)過的知識發(fā)表了自己的一些感受:
小明說:“絕對值不大于4的整數(shù)有7個(gè).”
小丁說:“若|a|=3,|b|=2,則a+b的值為5或1.”
小亮說:“﹣ <﹣,因?yàn)閮蓚(gè)負(fù)數(shù)比較大小,絕對值大的數(shù)反而。”
小彭說:“代數(shù)式a2+b2表示的意義是a與b的和的平方”
依次判斷四位同學(xué)的說法是否正確,如不正確,請幫他們修正,寫出正確的說法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com