【題目】如圖,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)若AB=6,AD=8,求AF的長.
【答案】(1)見解析;(2)AF=.
【解析】
(1)證明△BDF是等腰三角形,可證明BF=DF,可通過證明∠EBD=∠FDB實現(xiàn),利用折疊的性質(zhì)和平行線的性質(zhì)解決;
(1)設(shè)AF=x,則BF=DF=8-x,在Rt△ABF中,利用勾股定理構(gòu)造方程即可求解.
(1)根據(jù)折疊的性質(zhì)可得∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF,
∴△BDF是等腰三角形;
(2)設(shè)AF=x,則BF=DF=8-x,
在Rt△ABF中,AB2+AF2=BF2,即62+x2=(8﹣x)2,
解得x=,即AF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進行隨機抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少”,共有4個選項:A 1.5小時以上;B 1~1.5小時;C 0.5~1小時;D 0.5小時以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)在圖1中將選項B的部分補充完整;
(3)若該校有3000名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動的時間在0.5小時以下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸的負(fù)半軸交于點,與軸交于點,連結(jié),點C(6,)在拋物線上,直線與軸交于點
(1)求的值及直線的函數(shù)表達式;
(2)點在軸正半軸上,點在軸正半軸上,連結(jié)與直線交于點,連結(jié)并延長交于點,若為的中點.
①求證:;
②設(shè)點的橫坐標(biāo)為,求的長(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90,D為AB的中點,AE∥DC,CE∥DA.
(1)求證:四邊形ADCE是菱形;
(2)連接DE,若AC =,BC =2,求證:△ADE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的定點P和圖形F,給出如下定義:若在圖形F上存在一點N,使得點Q,點P關(guān)于直線ON對稱,則稱點Q是點P關(guān)于圖形F的定向?qū)ΨQ點.
(1)如圖,,,,
①點P關(guān)于點B的定向?qū)ΨQ點的坐標(biāo)是 ;
②在點,,中,______是點P關(guān)于線段AB的定向?qū)ΨQ點.
(2)直線分別與x軸,y軸交于點G,H,⊙M是以點為圓心,為半徑的圓.
①當(dāng)時,若⊙M上存在點K,使得它關(guān)于線段GH的定向?qū)ΨQ點在線段GH上,求的取值范圍;
②對于,當(dāng)時,若線段GH上存在點J,使得它關(guān)于⊙M的定向?qū)ΨQ點在⊙M上,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是該型號電風(fēng)扇近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
求A、B兩種型號的電風(fēng)扇的銷售單價;
若該商場準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,假設(shè)售價不變,那么商場應(yīng)采用哪種采購方案,才能使得當(dāng)銷售完這些風(fēng)扇后,商場獲利最多?最多可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小明用一張邊長為的正三角形硬紙板設(shè)計一個無蓋的正三棱柱糖果盒,從三個角處分別剪去一個形狀大小相同的四邊形,其一邊長記為,再折成如圖2所示的無蓋糖果盒,它的容積記為.
(1)關(guān)于的函數(shù)關(guān)系式是__________,自變量的取值范圍是__________.
(2)為探究隨的變化規(guī)律,小明類比二次函數(shù)進行了如下探究:
①列表:請你補充表格中的數(shù)據(jù):
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
0 | 3.125 | ________ | 3.375 | ________ | 0.625 | 0 |
②描點:請你把上表中各組對應(yīng)值作為點的坐標(biāo),在平面直角坐標(biāo)系中描出相應(yīng)的點;
③連線:請你用光滑的曲線順次連接各點.
(3)利用函數(shù)圖象解決:
①該糖果盒的最大容積是__________;
②若該糖果盒的容積超過,請估計糖果盒的底邊長的取值范圍.(保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
借助圖形的直觀性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過對小黑點的計數(shù),我們可以得到1+2+3+…+n=n(n+1);由圖②,通過對小圓圈的計數(shù),我們可以得到1+3+5+…+(2n﹣1)=n2.
那么13+23+33+…+n3結(jié)果等于多少呢?
如圖③,AB是正方形ABCD的一邊,BB′=n,B′B″=n﹣1,B″B′′′=n﹣2,……,顯然AB=1+2+3+…+n= n(n+1),分別以AB′、AB″、AB′′′、…為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn﹣1、Sn﹣2、…、S1.
(規(guī)律探究)
結(jié)合圖形,可以得到Sn=2BB′×BC﹣BB′2= ,
同理有Sn﹣1= ,Sn﹣2= ,…,S1=13.
所以13+23+33+…+n3=S四邊形ABCD= .
(解決問題)
根據(jù)以上發(fā)現(xiàn),計算的結(jié)果為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com