【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:DE是⊙O的切線.
(2)若BF=2,BD=2,求⊙O的半徑.
【答案】(1)見解析;(2).
【解析】
(1)證明△DAF≌△DCE,可得∠DFA=∠DEC,證出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切線.
(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的長即可.
(1)證明:如圖1,連接DF,
∵四邊形ABCD為菱形,
∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,
∵BF=BE,
∴AB﹣BF=BC﹣BE,
即AF=CE,
∴△DAF≌△DCE(SAS),
∴∠DFA=∠DEC,
∵AD是⊙O的直徑,
∴∠DFA=90°,
∴∠DEC=90°
∵AD∥BC,
∴∠ADE=∠DEC=90°,
∴OD⊥DE,
∵OD是⊙O的半徑,
∴DE是⊙O的切線;
(2)解:如圖2,
∵AD是⊙O的直徑,
∴∠DFA=90°,
∴∠DFB=90°,
在Rt△ADF和Rt△BDF中,
∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,
∴AD2﹣AF2=DB2﹣BF2,
∴AD2﹣(AD﹣BF)2=DB2﹣BF2,
∴
∴AD=5.
∴⊙O的半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著《流浪地球》的熱播,其同名科幻小說的銷量也急劇上升.為應(yīng)對這種變化,某網(wǎng)店分別花20000元和30000元先后兩次增購該小說,第二次的數(shù)量比第一次多500套,且兩次進價相同.
(1)該科幻小說第一次購進多少套?
(2)根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250套;銷售單價每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書的利潤不低于10元且不高于18元.
①直接寫出網(wǎng)店銷售該科幻小說每天的銷售量y(套)與銷售單價x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
②網(wǎng)店決定每銷售1套該科幻小說,就捐贈a(0<a<7)元給困難職工,每天扣除捐贈后可獲得的最大利潤為1960元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;
(3)在拋物線上是否存在異于的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標為t.
①當點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學(xué)教材第96頁的部分內(nèi)容.
請根據(jù)教材中的分析,結(jié)合圖①,寫出“角平分線的性質(zhì)定理”完整的證明過程.
定理應(yīng)用:
如圖②,在四邊形中,,點在邊上.平分,平分.
(1)求證:.
(2)若,,則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,動點P沿B→A→D→C→B路線運動,點M是AB邊上的一點,且MB=AB,已知AB=4,BC=2,AP=2MP,則點P到邊AD的距離為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為△ABC外接圓的圓心,以AB為腰作等腰△ABD,使底邊AD經(jīng)過點O,并分別交BC于點E、交⊙O于點F,若∠BAD=30°.
(1)求證:BD是⊙O的切線;
(2)當CA2=CECB時,
①求∠ABC的度數(shù);
②的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,以為邊在的另一側(cè)作,點為射線上任意一點,在射線上截取,連接.
(1)如圖1,當點落在線段的延長線上時,直接寫出的度數(shù);
(2)如圖2,當點落在線段(不含邊界)上時,與于點,請問(1)中的結(jié)論是否仍成立?如果成立,請給出證明;如果不成立,請說明理由;
(3)在(2)的條件下,若,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市用3400元購進A、B兩種文具盒共120個,這兩種文具盒的進價、標價如下表:
價格/類型 | A型 | B型 |
進價(元/只) | 15 | 35 |
標價(元/只) | 25 | 50 |
(1)這兩種文具盒各購進多少只?
(2)若A型文具盒按標價的9折出售,B型文具盒按標價的8折出售,那么這批文具盒全部售出后,超市共獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com