分析 (1)由圓周角定理可證∠AED=90°,所以∠DEB=90°,再由公共角相等即可證明△BDE∽△BAC;
(2)由圓周角定理可證明AD是△ACD外接圓的直徑,在直角三角形ACD中利用勾股定理可求出AD的長,問題得解;
(3)設BD=x,則BC=CD+x,由勾股定理可求出AB的長,由(1)可知△BDE∽△BAC,利用相似三角形的性質(zhì):對應邊的比值相等可得到關于x的比例式,進而可求出x的值,BD的長得解.
解答 解:(1)∵∠ACB=90°,
∴AD是圓的直徑,
∴∠AED=90°,
∴∠DEB=90°,
又∵∠B=∠B,
∴△BDE∽△BAC;
(2)∵∠ACB=90°,
∴AD是圓的直徑,
∵AC=6,CD=3,
∴AD=√AC2+CD2=√45=3√5;
(3)∵AD平分∠CAB,AE⊥DE,AC⊥CD,
∴CD=DE=3,
設BD=x,則BC=CD+x=3+x,
在Rt△ACB中,AB=√AC2+BC2=√62+(3+x)2,
∵△BDE∽△BAC,
∴DEAC=BDAB,
即36=x√62+(3+x)2,
∴4x2=62+(3+x)2,
解得:x=5或-3(舍),
∴BD=5.
點評 本題考查了和圓有關的綜合性題目,用到的知識點有圓周角定理、勾股定理、角平分線的性質(zhì)定理、相似三角形的判定和性質(zhì)以及解一元二次方程,題目的綜合性較強,難度中等,利用方程思想解決幾何題目是解題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com