【題目】小明坐于堤邊垂釣,如圖,河堤的坡角為長(zhǎng)為米,釣竿的傾斜角是,其長(zhǎng)為米,若與釣魚線的夾角為,求浮漂與河堤下端之間的距離.

【答案】

【解析】試題分析:延長(zhǎng)OA交BC于點(diǎn)D,根據(jù)題意得出△ACD為直角三角形,從而求出CD的長(zhǎng)度,然后根據(jù)等邊三角形OBD的性質(zhì)得出BD的長(zhǎng)度,從而求出BC的長(zhǎng)度.

試題解析:解:延長(zhǎng)OABC于點(diǎn)D. ∵AO的傾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,

∴∠CAD=180°-∠ODB-∠ACD=90°.

在Rt△ACD中,AD=ACtan∠ACD=(米), ∴CD=2AD=米,

又∵∠O=60°,∴△BOD是等邊三角形, ∴BD=OD=OA+AD=(米),

BC=BD-CD=(米).

答:浮漂B與河堤下端C之間的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形中到三邊距離相等的點(diǎn)是( 。

A. 三條邊的中垂線交點(diǎn) B. 三條高交點(diǎn)

C. 三條中線交點(diǎn) D. 三條角平分線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在植樹節(jié)到來之際,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.

(1)若購(gòu)進(jìn)AB兩種樹苗剛好用去1220元,問購(gòu)進(jìn)A、B兩種樹苗各多少棵?

(2)若購(gòu)買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算。
(1)若28n16n=222 , 求n的值.
(2)已知3m=6,9n=2,求32m4n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨州市尚市“桃花節(jié)”觀賞人數(shù)逐年增加,據(jù)有關(guān)部門統(tǒng)計(jì),2014年約為20萬人次,2016年約為28.8萬人次,設(shè)觀賞人數(shù)年均增長(zhǎng)率為x,則下列方程中正確的是( )
A.20(1+2x)=28.8
B.28.8(1+x)2=20
C.20(1+x)2=28.8
D.20+20(1+x)+20(1+x)2=28.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx(k≠0)的函數(shù)值y隨x的增大而減小,則一次函數(shù)y=kx+k的圖象大致是圖中的( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC, BAC=40°,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)100°得到△ADE,連接BD,CE交于點(diǎn)F.

(1)求證:△ABD≌△ACE;

(2)求證:四邊形ABFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(30),與y軸交于點(diǎn)C0﹣3

1)求拋物線的解析式;

2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、mx軸圍成的三角形和直線lmy軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩公司為“見義勇為基金會(huì)”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.

請(qǐng)你根據(jù)以上信息,提出一個(gè)用分式方程解決的問題,并寫出解答過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案