【題目】某水果基地積極計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.

每輛汽車能裝的數(shù)量(噸)

4

2

3

每噸水果可獲利潤(千元)

5

7

4

1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?

2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結果用m表示)

3)在(2)問的基礎上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?

【答案】(1)裝運乙種水果的車有2輛、丙種水果的汽車有6輛;(2)裝運乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛;(3)當運甲水果的車15輛,運乙水果的車3輛,運丙水果的車2輛,利潤最大,最大利潤為366元.

【解析】試題分析:(1)根據(jù)“8輛汽車裝運乙、丙兩種水果共22噸到A地銷售列出方程組,即可解答;

2)設裝運乙、丙水果的車分別為a輛,b輛,列出方程組,即可解答;

3)設總利潤為w千元,表示出w=10m+216.列出不等式組,確定m的取值范圍13≤m≤15.5,結合一次函數(shù)的性質,即可解答.

試題解析:(1)設裝運乙、丙水果的車分別為x輛,y輛,得: ,解得:

答:裝運乙種水果的車有2輛、丙種水果的汽車有6輛.

2)設裝運乙、丙水果的車分別為a輛,b輛,得: ,解得:

答:裝運乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛.

3)設總利潤為w千元,w=4×5m+2×7m﹣12=4×332﹣2m=10m+216

13≤m≤15.5,m為正整數(shù),m=13,14,15,在w=10m+216中,wx的增大而增大,m=15時,W最大=366(千元).

答:當運甲水果的車15輛,運乙水果的車3輛,運丙水果的車2輛,利潤最大,最大利潤為366元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+ax﹣1=0的根的情況是( 。

A. 沒有實數(shù)根 B. 只有一個實數(shù)根

C. 有兩個相等的實數(shù)根 D. 有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了抓住市文化藝術節(jié)的商機,某商店決定購進A,B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,

B種紀念品6件,需要800元.

(1)求購進A,B兩種紀念品每件各需多少元?

(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?

(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的有( )個

①從直線外一點到這條直線的垂線段,叫做點到直線的距離②內(nèi)錯角相等,③過一點有且只有一條直線與已知直線垂直④相等的角是對頂角

A. 0 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,若平移二次函數(shù)y=(x﹣6)(x﹣7)﹣3的圖象,使其與x軸交于兩點,且此兩點的距離為1個單位,則平移方式為(  )

A. 向左平移3個單位 B. 向右平移3個單位

C. 向上平移3個單位 D. 向下平移3個單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,AB是⊙O的一條弦,點C是優(yōu)弧上一點.

(1)若∠ACB=45°,點P是⊙O上一點(不與A、B重合),則∠APB= ;

(2)如圖②,若點P是弦AB與所圍成的弓形區(qū)域(不含弦AB與)內(nèi)一點.求證:∠APB>∠ACB;

(3)請在圖③中直接用陰影部分表示出在弦AB與所圍成的弓形區(qū)域內(nèi)滿足∠ACB<∠APB<2∠ACB的點P所在的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形的兩邊長分別為3和6,第三邊長是奇數(shù),則第三邊長可以是( 。

A. 3 B. 4 C. 5 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD中,AC與BD相交于點O,AB=AC,延長BC到點E,使CE=BC,連接AE,分別交BD、CD于點F、G.

(1) 求證:△ADB≌△CEA;

(2) 若BD=6,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運算結果為2mnm2n2的是()
A.(mn2
B.﹣(mn2
C.﹣(m+n2
D.(m+n2

查看答案和解析>>

同步練習冊答案