【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)對應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

y

﹣3

﹣2

﹣3

﹣6

﹣11

則該函數(shù)圖象的對稱軸是(
A.直線x=﹣3
B.直線x=﹣2
C.直線x=﹣1
D.直線x=0

【答案】B
【解析】解:∵x=﹣3和﹣1時的函數(shù)值都是﹣3相等, ∴二次函數(shù)的對稱軸為直線x=﹣2.
故選:B.
根據(jù)二次函數(shù)的對稱性確定出二次函數(shù)的對稱軸,然后解答即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊(duì)承包了全長3150米的公路施工任務(wù),甲、乙兩個組分別從東、西兩端同時施工,已知甲組比乙組平均每天多施工6米,經(jīng)過5天施工,兩組共完成了450米.
(1)求甲、乙兩個組平均每天各施工多少米?
(2)為加快工程進(jìn)度,通過改進(jìn)施工技術(shù),在剩余的工程中,甲組平均每天能比原來多施工4米,乙組平均每天比原來多施工6米,按此施工進(jìn)度,能夠比原來少用多少天完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,后求值: ,其中x在數(shù)軸上的對應(yīng)點(diǎn)到原點(diǎn)的距離為 個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a≠0)交x軸與A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),將直尺WXYZ與x軸負(fù)方向成45°放置,邊WZ經(jīng)過拋物線上的點(diǎn)C(4,m),與拋物線的另一交點(diǎn)為點(diǎn)D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;

(2)探究:在直線AC上方的拋物線上是否存在一點(diǎn)P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(3)將直尺以每秒2個單位的速度沿x軸向左平移,設(shè)平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點(diǎn)M,與拋物線的其中一個交點(diǎn)為點(diǎn)N,請直接寫出當(dāng)t為何值時,可使得以C、D、M、N為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,則∠EBF的度數(shù)是( )

A.75°
B.60°
C.50°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);

(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)﹣47×(﹣ )+53×
(2)22+|﹣6|+ ﹣(﹣1)2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:(1)(2)
(1)計(jì)算: ﹣(﹣2)+(﹣1)0﹣( 1+
(2)比較 與0.5的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖所示,則下列式子中正確的是( )

①b<0<a;②|b|<|a|;③ab>0;④a-b>a+b。
A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

同步練習(xí)冊答案