【題目】已知拋物線的對稱軸是直線x=﹣1,與x軸一個交點是點A(﹣3,0),且經(jīng)過點B(﹣26

1)求該拋物線的解析式;

2)若點(﹣y1)與點(2,y2)都在該拋物線上,直接寫出y1y2的大小關系.

【答案】1y=﹣2x24x+6;(2y1y2

【解析】

1)先利用對稱性確定拋物線與x軸另一個交點坐標為(1,0),則可設交點式為yax+3)(x1),然后把B點坐標代入求出a即可;

2)根據(jù)二次函數(shù)的性質(zhì),通過比較點(﹣,y1)和點(2,y2)到直線x=﹣1的距離大小確定y1y2的大小關系.

解:(1)∵拋物線的對稱軸是直線x=﹣1,與x軸一個交點是點A(﹣3,0),

∴拋物線與x軸另一個交點坐標為(1,0),

設拋物線解析式為yax+3)(x1),

B(﹣2,6)代入得a×1×(﹣3)=6,解得a=﹣2

∴拋物線解析式為y=﹣2x+3)(x1),即y=﹣2x24x+6;

2)∵點(﹣,y1)到直線x=﹣1的距離比點(2,y2)到直線x=﹣1的距離要小,

而拋物線的開口向下,

y1y2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙OAB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.

(1)求證:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2015年12月16日,南京大報恩寺遺址公園正式對外開放.某校數(shù)學興趣小組想測量大報恩塔的高度.如圖,成員小明利用測角儀在B處測得塔頂?shù)难鼋铅?63.5°,然后沿著正對該塔的方向前進了13.1m到達E處,再次測得塔頂?shù)难鼋铅?71.6°.測角儀BD的高度為1.4m,那么該塔AC的高度是多少?(參考數(shù)據(jù):sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cos71.6°≈0.30,tan71.6°≈3.00)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表記錄了一名球員在罰球線上投籃的結(jié)果,這么球員投籃一次,投中的概率約是( )

投籃次數(shù)

10

50

100

150

200

250

300

500

投中次數(shù)

4

35

60

78

104

123

152

251

投中頻率

0.40

0.70

0.60

0.52

0.52

0.49

0.51

0.50

A. 0.7B. 0.6C. 0.5D. 0.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.

銷售量y(千克)

34.8

32

29.6

28

售價x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yaxm12+2m(其中m0)與其對稱軸l相交于點P.與y軸相交于點A0,m)連接并延長PAPO,與x軸、拋物線分別相交于點BC,連接BC將△PBC繞點P逆時針旋轉(zhuǎn),使點C落在拋物線上,設點CB的對應點分別是點B′和C′.

1)當m1時,該拋物線的解析式為:   

2)求證:∠BCA=∠CAO;

3)試問:BB′+BCBC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超市有一種喜之郎果凍禮盒,內(nèi)裝兩個上下倒置的果凍,果凍高為4cm,底面是個直徑為6cm的圓,軸截面可以近似地看作一個拋物線,為了節(jié)省成本,包裝應盡可能的小,這個包裝盒的長不計重合部分,兩個果凍之間沒有擠壓至少為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價為6/千克,到了收獲季節(jié)投入市場銷售時,調(diào)查市場行情后,發(fā)現(xiàn)該蜜柚不會虧本,且每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關系如圖所示.

1)求yx的函數(shù)關系式,并寫出x的取值范圍;

2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請說明理由;若不能,應定銷售價為多少元時,既能銷售完又能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個球是白球的概率是多少?

(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

同步練習冊答案