【題目】如圖,為測量某條河的寬度BC,工程隊用無人機在距地面高度為200米的A處測得B,C兩點的俯角分別為30°45°,且點B,C,D在同一水平直線上,求A,C之間的距離和這條河的寬度BC.(結(jié)果保留根號)

【答案】AC200米.這條河的寬度BC為(200200)米

【解析】

可求出AC200,求出BDCD,則BC可求出.

解:∵AEDB,

∴∠ACD=∠EAC45°;

RtACD中,∠ACD45°,AD200米,

AC 200(米);

AEDB,

∴∠ABD=∠EAB30°;

∴在RtABD中,BD200(米);

RtACD中,∠ACD=∠CAD45°

CDAD200,

BCBDCD=(200200)(米).

答:AC200米.這條河的寬度BC為(200200)米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應(yīng)沿北偏西60方向行駛8千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求BC兩地的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=1.且過點,有下列結(jié)論:

abc0 a2b+4c=0; 25a10b+4c=0; 3b+2c0 ab≥mamb);

其中所有正確的結(jié)論是______.(填寫正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某海監(jiān)船以20海里/小時的速度在某海域執(zhí)行巡航任務(wù),當海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為(  )

A. 40海里 B. 60海里 C. 20海里 D. 40海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于兩點,

(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達式;

(2)在反比例函數(shù)的圖像上找點,使得點構(gòu)成以為底的等腰三角形,請求出所有滿足條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結(jié)論:①;;④當時, 的增大而增大.其中正確的結(jié)論有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸的交點為A(﹣1,0),B3,0),與y軸交于點N,以AB為邊在x軸上方作正方形ABCD,點Px軸上一動點,連接CPDP,過點PCP的垂線與y軸交于點E

1)求該拋物線的函數(shù)關(guān)系表達式;

2)當CP+DP的值最小時,求E點的坐標;

3)在第四象限的拋物線上任取一點M,連接MNMB,是否存在點M使得MNB為直角三角形;若存在,求出此時點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點E,DHAE于點H,連接BH并延長交CD于點F,連接DEBF于點O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx3x軸交于A,B兩點(A點在B點左側(cè)),A(﹣1,0),B3,0),直線l與拋物線交于AC兩點,其中C點的橫坐標為2

1)求拋物線的函數(shù)解析式;

2P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;

3)點G是拋物線上的動點,在x軸上是否存在點F,使A,C,FG這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案