如圖(1),△ABC是正三角形,曲線DA1B1C1…叫做“正三角形ABC的漸開線”,其中
A1C
,
A1B1,
B1C1
,…依次連接,它們的圓心依次按A,B,C循環(huán).則曲線CA1B1C1叫做正△ABC的1重漸開線,曲線CA1B1C1A2B2C2叫做正△ABC的2重漸開線,…,曲線CA1B1C1A2…AnBnCn叫做正△ABC的n重漸開線.如圖(2),四邊形ABCD是正方形,曲線CA1B1C1D1…叫做“正方形ABCD的漸開線”,其中
A1D
,
A1B1
,
B1C1
,
C1D1
…依次連接,它們的圓心依次按A,B,C,D循環(huán).則曲線DA1B1C1D1叫做正方形ABCD的1重漸開線,…,曲線DA1B1C1D1A2…AnBnCnDn叫做正方形ABCD的n重漸開線.依次下去,可得正n形的n重漸開線(n≥3).
若AB=1,則正方形的2重漸開線的長為18π;若正n邊形的邊長為1,則該正n邊形的n重漸開線的長為
 

精英家教網(wǎng)
分析:利用n邊形的外角與n的關系,然后再利用漸開線中第n重的關系求值.
解答:解:若正n邊形的邊長為1,
則該正n邊形的第一重漸開線長=
90π×1
180
,二重=
90π×1
180
+
90π×2
180
,
第n重漸開線的長
90π×1
180
+
90π×2
180
+…+
90π×n
180
,
這是四邊形,如果是n邊形,
則內(nèi)角和是(n-2)×180÷n,
所以正n邊形的邊長為1,
則該正n邊形的n重漸開線的長為2π/n(1+2+…+n)+2π/n[(n+1)+(n+2)+…+(n+n)]+…+2π/n{[(n-1)n+1]+[(n-1)n+2]+…+[(n-1)n+n]=n(n2+1)π.
點評:本題的關鍵是明白n邊形的外角與n的關系,然后再利用漸開線中第n重的關系求值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點,且AE=CD.
(1)求證:AD=BE;
(2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中點,BE=AD.
(1)試說明:CE⊥BD;
(2)線段AC與ED之間存在什么關系?為什么?
(3)判斷△BDC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中點,則平移的距離是
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點D在直線AM上時,以CD為一邊且在CD的下精英家教網(wǎng)方作等邊△CDE,連接BE.
(1)填空:當點D運動到點M時,∠ACE=
 
度;
(2)當點D在線段AM上(點D不運動到點A)時,求證:△ADC≌△BEC;
(3)若AB=8,以點C為圓心,以5為半徑作⊙C與直線BE相交于點P、Q兩點,在點D運動的過程中(點D與點A重合除外),試求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓內(nèi)接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點F,OE⊥AC于點G,陰影部分四邊形OFCG的面積是△ABC的面積的
 

查看答案和解析>>

同步練習冊答案