【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標(biāo):A′( ),B′( ),C′( )
(3)計算△ABC的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在圖 (每個小正方形的邊長均為1)中建立兩個不同的平面直角坐標(biāo)系,在各個坐標(biāo)系中分別寫出六邊形6個頂點的坐標(biāo);
(2)要使圖中點B與點F的橫坐標(biāo)互為相反數(shù),則應(yīng)選取怎樣的直線作為y軸,試在圖中標(biāo)出來,此時點E與點C的橫坐標(biāo)有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列每個圖形中(每個圖形都各自獨立),是否存在相似的三角形,如果存在,把它們用字母表示出來,并簡要說明識別的根據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)請你畫出將△OAB繞點O沿逆時針方向旋轉(zhuǎn)90°,得到的△OA1B1;
(2)線段OA1的長度是______,∠AOB1的度數(shù)是______;
(3)連接AA1,求證:四邊形OAA1B1是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在宿州十一中校園文化藝術(shù)節(jié)中,九年級十班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列方格紙中的△ABC向右平移7格,再向下平移2格,得到△.(1)畫出平移后的三角形;
(2)若AB=5,則= .
(3)連接AA1,BB1, 根據(jù)“圖形平移”的性質(zhì),得:線段AA1與線段BB1的數(shù)量關(guān)系和位置關(guān)系是: .
(4)求圖中∠AC+∠BC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個港口相距72千米,一艘輪船從甲港出發(fā),順流航行3小時到達(dá)乙港,休息1小時后立即返回;一艘快艇在輪船出發(fā)2小時后從乙港出發(fā),逆流航行2小時到甲港,并立即返回(掉頭時間忽略不計)。已知水流速度是2千米/時,下圖表示輪船和快艇距甲港的距離y(千米)與輪船出發(fā)時間x(小時)之間的函數(shù)關(guān)系式,結(jié)合圖象解答下列問題:
(順流速度=船在靜水中速度+水流速度;逆流速度=船在靜水中速度-水流速度)
(1)輪船在靜水中的速度是 千米/時;快艇在靜水中的速度是 千米/時;
(2)求快艇返回時的解析式,寫出自變量取值范圍;
(3)快艇出發(fā)多長時間,輪船和快艇在返回途中相距12千米?(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com